

EMPOWERING UNDERGROUND LABORATORIES NETWORK USAGE

Activity Report of WP3.3

12|2021

Scheme of Polkowice-Sieroszowice mine (CUPRUM) devoted to natural background radiation (NBR) characterization

Author: Katarzyna Szkliniarz, Jan Kisiel University of Silesia, Poland

MPOWERING JNDERGROUND ABORATORIES JETWORK USAGE

Contents

1.	General information	6
2.	Measurements of the NBR in Underground Laboratory	7
a.	In-situ gamma-ray measurement	8
b.	Measurements of the radon concentration in air	14
с.	Measurements of the neutron flux	16
3. La	boratory analyses of the water samples	19
4. La	boratory analyses of the rock samples	19
а.	Radium and potassium concentration in rock samples	20
b.	Uranium concentration in rock samples	25
с.	Neutron activation of the rock sample	30

APOWERING NDERGROUND NBORATORIES

Figures

Fig. 1 (a) the view of the surroundings of measurement point location (by Krzysztof Fuław KGHM) in dolomite formation, about 1000 m below the ground in Polkowice-Sieroszowice conner mine. (b) The view of 85-m long exception No.3 with cross sectional dimensions	ka, e 7
Fig. 2 Geometry modelled for efficiency calibration in ISOCS software	,
Fig. 2 Schematic plan of excavation No 3 pear SW-1 shaft with marked site where the in-si	
gamma-ray measurement was performed	10
Fig. 4 Gamma-ray spectrum from excavation No 3 near SW-1 shaft	10
Fig. 5 Schomatic plan of the exception No 2 pear SW 1 shaft with marked sites where the	10
rig. 5 schematic plan of the excavation wo 5 hear 5w-1 shart with marked sites where the	: 15
Fig. 6 Plot of radon concentration in the air in Polkowice Signoszowice mine – exception	1J
noar SW 1 shaft	16
Fig. 7 Schematic plan of neutron detector location in the excavation No 3 pear SW-1 shaft	10
Fig. 8 Amplitude spectra for neutron signals in individual counters. Top row: Centronic	•10
counters bottom row: 7DAI counters. The 7DAI counter connected to the 24 DAO channel	4
was excluded from the analysis due to high noise	18
Fig. 9 Rock samples from Polkowice-Sieroszowice mine	10 20
Fig. 10 (a) rock sample placed in the Marinelli container during measurement with the HP	20 9Ge
detector (b) crushed rock samples (c) rock samples in Marinelli containers	21
Fig. 11 Gamma-ray spectrum of a rock sample 1	21
Fig. 12 Gamma-ray spectrum of a rock sample 2.	22
Fig. 13 Gamma-ray spectrum of a rock sample 3.	23
Fig. 14 Gamma-ray spectrum of a rock sample 4.	
Fig. 15 Gamma-ray spectrum of a rock sample 5.	24
Fig. 16 Gamma-ray spectrum of a rock sample 6.	
Fig. 17 Gamma-ray spectrum of a rock sample 7.	25
Fig. 18 (a) The alpha spectrometer 7401VR (Canberra, USA). (b) The alpha spectrometer A	lpha
Analyst™ (Mirion Technologies (Canberra), Inc., USA).	
Fig. 19 The alpha spectrum of a rock sample 1 – Polkowice-Sieroszowice mine.	27
Fig. 20 The alpha spectrum of a rock sample 2 – Polkowice-Sieroszowice mine.	27
Fig. 21 The alpha spectrum of a rock sample 3 – Polkowice-Sieroszowice mine.	28
Fig. 22 The alpha spectrum of a rock sample 4 – Polkowice-Sieroszowice mine.	28
Fig. 23 The alpha spectrum of a rock sample 5 – Polkowice-Sieroszowice mine.	29
Fig. 24 The alpha spectrum of a rock sample 6 – Polkowice-Sieroszowice mine.	29
Fig. 25 The alpha spectrum of a rock sample 7 – Polkowice-Sieroszowice mine.	30
Fig. 26 (a) source (²⁵² Cf) of neutron activation, (b) crushed rock sample after neutron	
activation placed on the HPGe detector, (c) crushed rock sample after neutron activation.	31
Fig. 27 Gamma-ray spectrum of the rock sample measured 5.3 h after neutron activation.	33
Fig. 28 Gamma-ray spectrum of the rock sample measured 18.3 h after neutron activation	34
Fig. 29 Gamma-ray spectrum of the rock sample measured 42.5 h after neutron activation	34

Fig. 30 Gamma-ray spectrum of the rock sample measured 80 h after neutron activation......35 Fig. 31 Gamma-ray spectrum of the rock sample measured 94.2 h after neutron activation....35

MPOWERING NDERGROUND ABORATORIES

Tables

Tab. 1 Description of the site where the in-situ measurements were performed	7
Tab. 2 Results of in-situ gamma-ray measurements	9
Tab. 3 Results of gamma flux, gamma-ray dose and contribution of the radioisotopes for t	he
investigated localizations.	11
Tab. 4 Qualitative analysis of gamma-ray spectra registered in Polkowice-Sieroszowice mi	ne –
excavation No 3 near SW-1 shaft	11
Tab. 5 Effective dose rate and apparent radioactivity results calculated based on the gamm	na-
ray spectrum for excavation No 3 near SW-1 shaft*.	14
Tab. 6 The results of radon concentration in the air at the Polkowice-Sieroszowice mine -	
excavation No 3 near SW-1 shaft	15
Tab. 7 Results of the neutron flux measurements	17
Tab. 8 Description of the sites where rock samples were collected.	19
Tab. 9 Results of radium and potassium concentration in rock samples	21
Tab. 10 Results of uranium radioisotopes concentration in rock samples.	26
Tab. 11 Neutron activation results of the rock sample from Polkowice-Sieroszowice mine.	31
Tab. 12 Comparison of counts per second for a rock sample before and after neutron	
activation of a rock sample.	31

1POWERING NDERGROUND BORATORIES

1. General information

Name of Underground Laboratory:

Conceptual Lab development co-ordinated by KGHM Cuprum R&D centre Polkowice-Sieroszowice mine

(http://www.cuprum.wroc.pl)

Name of the responsible scientist/measurer: University of Silesia, Poland:

Jan Kisiel Kinga Polaczek-Grelik Agata Walencik-Łata Katarzyna Szkliniarz

National Centre for Nuclear Research, Poland: Karol Jędrzejczak Jacek Szabelski

Place where the data is stored (e.g., file in a drawer X, internal data cloud, etc.): Pendrive, external memory,

Description of the sites where the in-situ measurements were performed:

-				
Hall ID	Dimension of the cavern [height x length x width] (m)	Air volume exchange rate / Ventilation [m ³ /s]	Depth below surface [m w.e.]	Environmental condition (average temperature /average humidity)
excavation No 3 near SW-1 shaft	3.62 x 85 x 4.52	1162	2941.8	18.8 - 25.6 °C / 52%

UNIVERSITY OF SILESIA

IN KATOWICE

Tab. 1 Description of the site where the in-situ measurements were performed.

Fig. 1 (a) the view of the surroundings of measurement point location (by Krzysztof Fuławka, KGHM) in dolomite formation, about 1000 m below the ground in Polkowice-Sieroszowice copper mine, (b) The view of 85-m long excavation No 3 with cross sectional dimensions.

MPOWERING NDERGROUND ABORATORIES FTWORK USAGE

a. In-situ gamma-ray measurement

Information about measurement

The in-situ measurement of the natural background radiation (NBR) was performed by using portable gamma-ray spectroscopy and HPGe (high-purity germanium) detector. Multichannel analyzer and special software packages were applied for spectra registration and analysis. Energy calibration (covering the range of 14 - 2506 keV) was performed using a set of sealed radioactive sources (1 cm in diameter and about 40 kBq activity): ¹³³Ba, ¹³⁷Cs, ⁵⁴Mn, ⁵⁷Co, ¹⁰⁹Cd, ²²Na, and ⁶⁰Co. Efficiency calibration was performed using the geometry of room/box with internal surface contamination, modeled in Geometry Composer software applying ISOCSTM software and monoenergetic photons covering the energy range of 10 - 3300 keV (an adequate measuring range). The monoenergetic photon flux density was estimated from the photopeak areas employing detection efficiency curve ϵ (E), Ge crystal surface area, and lifetime of spectrum acquisition. An effective dose was calculated using photon flux-to-dose conversion coefficients for isotropic irradiation with monoenergetic photons, interpolated based on data provided by the International Commission on Radiological Protection (ICRP) in report 116 using a third-degree Lagrange formula. Identification of in-situ registered radioisotopes was based on the photopeaks' energies.

Measurements performed in free space

Efficiency modeling

The horizontal orientation of spectrometer

Geometry for efficiency calibration was based on room/box with internal surface contamination (software template) with dimensions of investigated localization. Radioactivity was assumed to be distributed equally between 5 out of 6 walls.

EMPOWERING UNDERGROUND LABORATORIES NETWORK USAGE

Fig. 2 Geometry modelled for efficiency calibration in ISOCS software.

Description of detector settings during measurement (where the detector was placed (near wall, floor....):

detector position (horizontal, vertical): **horizontal position, on the floor** distance from the walls: **about 2 m**

measurement of the gamma-ray spectrum from the wall, floor, concrete, other: **2m in front of the nearest wall (the center of the germanium crystal was 13 cm above the floor)** use of a collimator during the measurement (if yes, what): **no**

• <u>Results</u>

Tab. 2 Results of in-situ gamma-ray measurements.

Hall ID (and place)	Measurement method	Equipment type	Detection relative efficiency [%]	Energy range [keV]	Results (integrated counts per second) [cps]
excavation No 3 near SW-1 shaft	Gamma spectroscopy	-GR4020 portable spectrometer, -HPGe coaxial detector, -InSpector™ 2000 multichannel - analyser (for data collecting), -Genie™ 2000 v.3.2.1 software package (for spectra analysing)	40	7-3150	216.12 ± 0.07*

*data are presented in K.Szkliniarz et al., Characteristics of Natural Background Radiation in the Polkowice - Sieroszowice Mine, Poland Energies (2021) 14, 4261.

Schematic plan of the Hall with marked site where the measurements were performed.

Fig. 3 Schematic plan of excavation No 3 near SW-1 shaft with marked site where the in-situ gamma-ray measurement was performed.

Gamma-ray spectrum:

Other relevant information:

Tab. 3 Results of gamma flux, gamma-ray dose and contribution of the radioisotopes for the investigated localizations.

Hall ID (and place)	Gamma flux [cm ⁻² s ⁻¹]	Gamma-ray dose [μSv/h]	Radioisotopes that have the main contributions ineffective dose		the main /e dose
			Decay chain	Isotope	Concentration
excavation	0.64 ± 0.20*	0.008 ± 0.001*	Uranium	²¹⁴ Bi	49.2
No 3 near			-	⁴⁰ K	29.9
SW-1 shaft			Thorium	²⁰⁸ TI	12.0
			Uranium	²¹⁴ Pb	4.1
			Thorium	²²⁸ Ac	4.0

*data are presented in K.Szkliniarz et al., Characteristics of Natural Background Radiation in the Polkowice - Sieroszowice Mine, Poland Energies (2021) 14, 4261.

Qualitative analysis of gamma-ray spectra registered in underground laboratory.

Qualitative analysis of gamma-ray spectra registered in the underground laboratory (LT - live time, measuring time; Area – net area of the photopeak on the spectrum gamma-ray) (SEP – single escape peak, DEP – double escape peak)

Tab. 4 Qualitative analysis of gamma-ray spectra registered in Polkowice-Sieroszowice mine – excavation No 3 near SW-1 shaft.

True Energy [keV]	lsotope	CPS = Area/LT	Δ CPS [%]
63.29	²³⁴ Th	0,1005	9.7
77.12	Bi - K _{a1}	0.935	1.3
87.343	Bi - K _{b1}	0.3855	2.1
92.59	²³⁴ Th	0.319	2.6
186.1	²²⁶ Ra	0.3769	2.2
241.98	²¹⁴ Pb	0.9756	0.8
270.24	²²⁸ Ac	0.0639	8.6
295.21	²¹⁴ Pb	0.987	0.7
327.6	²²⁸ Ac	0.0274	9.4
338.32	²²⁸ Ac	0.1116	2.8
351.92	²¹⁴ Pb	1.7785	0.4
463.01	²²⁸ Ac	0.0356	9.6
478.3	²²⁸ Ac	0.0075	29
510.77	²⁰⁸ TI	0.1478	3.5

EMPOWERING UNDERGROUND LABORATORIES NETWORK USAGE

E02.40	208-1	0 272	4.4
583.19	200	0.272	1.1
609.31	214Bi	1.8521	0.3
665.45	²¹⁴ Bi	0.0602	4.7
703.11	²¹⁴ Bi	0.0208	13.6
719.86	²¹⁴ Bi	0.0133	10
727.2	²¹⁴ Bi	0.0569	2.9
768.36	²¹⁴ Bi	0.2165	1.4
785.91	²¹⁴ Pb	0.0531	2.7
794.95	²²⁸ Ac	0.0356	3.8
806.17	²¹⁴ Bi	0.0459	3.1
840.377	²²⁸ Ac	0.0282	8.7
860.56	²⁰⁸ TI	0.0319	7.7
911.21	²²⁸ Ac	0.1963	1.3
934.06	²¹⁴ Bi	0.1125	2.2
949.83	⁴⁰ K (SEP)	0.0135	16.4
968.97	²²⁸ Ac	0.1722	1.6
1001.03	^{234m} Pa	0.0352	6.5
1051.96	²¹⁴ Bi	0.0052	30.3
1069.96	²¹⁴ Bi	0.006	32.8
1120.29	²¹⁴ Bi	0.5198	0.5
1155.19	²¹⁴ Bi	0.0578	4
1207.68	²¹⁴ Bi	0.0171	12.3
1238.11	²¹⁴ Bi	0.2042	1.3
1280.96	²¹⁴ Bi	0.0484	4.2
1377.67	²¹⁴ Bi	0.132	0.9
1385.31	²¹⁴ Bi	0.026	3.1
1401.5	²¹⁴ Bi	0.0458	2
1407.98	²¹⁴ Bi	0.0778	1.4
1460.83	⁴⁰ K	1.8681	0.2
1495.91	²²⁸ Ac	0.0084	7.7
1509.23	²¹⁴ Bi	0.0734	1.3
1538.5	²¹⁴ Bi	0.0291	3.5
1583.22	²¹⁴ Bi	0.0357	2.7
1592.53	²⁰⁸ TI (DEP)	0.0369	2.6
1599.31	²¹⁴ Bi	0.0115	7

EMPOWERING JNDERGROUND LABORATORIES NETWORK USAGE

1620.5	²¹⁴ Bi	0.0118	4.9
1630.63	²²⁸ Ac	0.012	4.8
1638.281	²²⁸ Ac	0.0046	10.6
1661.28	²¹⁴ Bi	0.0364	2.8
1683.99	²¹⁴ Bi	0.0072	6.6
1693.21	²¹⁴ Bi (SEP)	0.0101	5
1729.6	²¹⁴ Bi	0.0899	1.3
1764.5	²¹⁴ Bi	0.4892	0.4
1838.36	²¹⁴ Bi	0.0115	3.9
1847.42	²¹⁴ Bi	0.0646	1.2
1873.16	²¹⁴ Bi	0.007	11.9
1896.3	²¹⁴ Bi	0.0028	26.9
1936.86	²¹⁴ Bi (SEP)	0.0049	15.4
2052.94	²¹⁴ Bi	0.0014	37.4
2103.53	²⁰⁸ TI (SEP)	0.0293	1.8
2118.55	²¹⁴ Bi	0.0345	1.6
2204.21	²¹⁴ Bi	0.1449	0.8
2293.36	²¹⁴ Bi	0.0077	8.2
2447.86	²¹⁴ Bi	0.0446	1.6
2614.53	²⁰⁸ TI	0.2131	0.5
2694.63	²¹⁴ Bi sum	0.0008	12.2
2775.35	²¹⁴ Bi sum	0.0003	22.7
2884.79	²¹⁴ Bi sum	0.0003	18.4
2919.69	²¹⁴ Bi sum	0.0002	21.7
2984.62	²¹⁴ Bi sum	0.0004	14.8
3002.61	²¹⁴ Bi sum	0.0002	23.7
3057.17	²¹⁴ Bi sum	0.0005	11.8

Apparent radioactivity and effective dose rate calculated on the base of the gamma-ray spectrum.

Tab. 5 Effective dose rate and apparent radioactivity results calculated based on the gamma-ray spectrum for excavation No 3 near SW-1 shaft*.

Decay chain	Radionuclide	Effective dose rate [pSv/s]	% contribution	Apparent activity in measuring point [Bq/cm ²]
	²³⁴ Th	0.0020 ± 0.0002	0.1	0.095 ± 0.087
Ę	^{234m} Pa	0.007 ± 0.001	0.3	0.255 ± 0.017
anit	²²⁶ Ra	0.0030 ± 0.0005	0.2	0.177 ± 0.004
- L	²¹⁴ Bi	1.109 ± 0.160	49.2	0.239 ± 0.083
	²¹⁴ Pb	0.093 ± 0.013	4.1	0.205 ± 0.096
rium	²²⁸ Ac	0.091 ± 0.013	4.0	0.063 ± 0.041
Thoi	²⁰⁸ TI	0.271 ± 0.039	12.0	0.019 ± 0.007
ne	⁴⁰ K	29.910 ± 0.675	29.9	1.339 ± 0.003
ou	X rays	0.005 ± 0.001	0.2	-

*data are presented in K.Szkliniarz et al., Characteristics of Natural Background Radiation in the Polkowice - Sieroszowice Mine, Poland Energies (2021) 14, 4261.

b. Measurements of the radon concentration in air

• Information about measurement

Measurements of the radon concentration in the air were performed using the RAD7 radon detector. The measurements were made in cycles.

Description of detector settings during measurement (where the detector was placed (near the wall, floor...,):

Place of the measurement: **detector was placed next to the gamma spectrometer** Ventilation (on/off): **ventilation was on**

Other relevant information (use a drying unit, humidity, temperature, pressure, other): measurement was performed with the use of a drying unit, humidity 8.5 %, temperature 29.7°C

• <u>Results</u>

Tab. 6 The results of radon concentration in the air at the Polkowice-Sieroszowice mine – excavation No 3 near SW-1 shaft.

Hall ID	Measurement	Equipment	Collection	Average result
	method	type	period	[Bq/m ³]
excavation No 3 near SW-1 shaft	Alpha spectroscopy	RAD7 electronic radon detector (Durridge)	48 h (2-day protocol with 1-hour measurement cycle)	6.6 (median: 4.8)*

*data are presented in K.Szkliniarz et al., Characteristics of Natural Background Radiation in the Polkowice-Sieroszowice Mine, Poland Energies (2021) 14, 4261.

Schematic plan of the Hall with marked site where the measurements were performed.

Fig. 5 Schematic plan of the excavation No 3 near SW-1 shaft with marked sites where the measurements of the radon concentration in air were performed.

The plot of radon activity concentration in excavation.

- c. Measurements of the neutron flux
- Information about measurement

The thermal neutron flux was measured with eight proportional gas counters. The data acquisition system (DAQ) was designed and made in National Center for Nuclear Research in Poland. DAQ is built in the form of a cassette with eight measurement cards. Each card contains four independent measurement channels; together, it gives 32 channels. Each measurement channel is sampled with a frequency of 10 MHZ by an ADC with a dynamic of 10 bits. To determination of the neutron flux, the Monte Carlo simulation was used. The simulations were carried out using the Geant4 package version 10.04 using the physical package QGSP_BERT_HP and NeutronHPThermalScattering, which is essential for low-energy neutron interactions with nucleons bound in nuclei.

Standard method:

a) Type of counters (helium/boron) and name of the manufacturer, counter's dimensions: two kinds of helium detectors: 2 inches in diameter, 50 cm long tubes with 2 atm of ³He, 0.5 atm of Argon, some CO gas, and 25 - micrometer wires made by Centronic in 2008, and old thinner (1 inch), 50 cm long tubes with 4 atm of ³He and Krypton stopping gas produced

Fig. 6 Plot of radon concentration in the air in Polkowice-Sieroszowice mine – excavation No 3 near SW-1 shaft.

by ZDAJ in 60ties.

b) Setup description: number of counters, their distances in a tray, etc.:

8 helium counters, A flat tray of helium counters was positioned vertically in a rack. The tray was divided into two parts: first, there were four Centronic counters (Centronic 50He3 / 190 / 50MS), a 30 cm empty space, and again four ZDAJ counters (ZDAJ NEM425A50). There were 5 cm gaps between the individual counters to limit a shadowing effect.

c) Place of measurement: chamber name, distance from walls, large objects nearby, and what they are made of (water, polyethylene, graphite, etc.): detection setup for the neutron measurements was placed in the center of excavation No 3 near SW-1 shaft, a distance 2 m from walls

d) Humidity: normal / low / high

<u>Results</u>

Tab. 7 Results of the neutron flux measurements.

Hall ID	Collection period	Average neutron counting rate	Dispersion of neutron counting rate	Calculated neutron flux witch error
excavation	20–23	2.8±0.2 counts/h		1.9±0.2×10 ⁻⁶ [cm ⁻² s ⁻¹] for
No 3 near	July 2020	for Centronic;		Centronic counters, 2.2±0.4×10 ⁻⁶
SW-1 shaft		1.9±0.2 counts/h		[cm ⁻² s ⁻¹] for ZDAJ counters
		for ZDAJ counters		Average: 2.0±0.2×10 ⁻⁶ [cm ⁻² s ⁻¹]*

*data are presented in K.Szkliniarz et al., Characteristics of Natural Background Radiation in the Polkowice-Sieroszowice Mine, Poland Energies (2021) 14, 4261.

Schematic plan of detector location in the chamber.

Fig. 7 Schematic plan of neutron detector location in the excavation No 3 near SW-1 shaft.

Distribution of amplitude of signals from ³He counter:

Fig. 8 Amplitude spectra for neutron signals in individual counters. Top row: Centronic counters, bottom row: ZDAJ counters. The ZDAJ counter connected to the 24 DAQ channel was excluded from the analysis due to high noise.

3. Laboratory analyses of the water samples

There is no water in the Polkowice-Sieroszowice mine.

4. Laboratory analyses of the rock samples

Measurements of the concentration of uranium, radium, and potassium radioisotopes in the rock samples (*Fig. 9*) were performed in an external laboratory - "Low-level Activity Research Laboratory", Institute of Physics, the University of Silesia in Katowice, Poland.

Description of the sites where rock samples were taken:

Hall ID	Depth below	Sites (wall, floor,	Method of the	Name of the sample
	surface	brick, concrete,	sampling	
	[m w.e.]	other)		
		Centre of the corridor		rock sample 1
		Behind the bend of corridor 1		rock sample 2
	2941.8	The excavation hall		rock sample 3
		The end of the		rock sample 4
excavation No 3 near SW-1 shaft		Behind the bend of the corridor, near the floor	newly blasted excavation	rock sample 5
		Behind the bend of the corridor, slightly above the floor		rock sample 6
		Behind the bend of corridor 2		rock sample 7

 Tab. 8 Description of the sites where rock samples were collected.

MPOWERING NDERGROUND ABORATORIES ETWORK USAGE

Fig. 9 Rock samples from Polkowice-Sieroszowice mine.

a. Radium and potassium concentration in rock samples

• Information about measurement

The concentration of radium and potassium isotopes in the rock samples was determined by gamma spectroscopy with the HPGe detector in a lead shield (**Fig. 10**a). The activity of ⁴⁰K was calculated directly from a single 1460 keV line. The activity of ²²⁶Ra was calculated as the weighted mean of the values obtained from the ²¹⁴Pb (295.2, 351.9 keV) and ²¹⁴Bi (609.3, 1120.3 keV) isotopes, while ²²⁸Ra activity was calculated from the gamma lines 338.3 keV and 911.1 keV originating from ²²⁸Ac decay. The total duration of a single measurement depended on the sample activity.

Description of the procedure performed before measurements and conditions during measurements (e.g., use of a Marinelli beaker; shielding of the detector; drying, crushing, grinding, mixing of rock; other relevant information): Before the measurements, the rock sample was dried, crushed, ground, mixed and placed in a Marinelli container (Fig. 10b,c), which was then sealed and left for one month to achieve secular equilibrium in the thorium and uranium series. The grains diameter after crushing the rock sample was less than 1 mm. Measurements were made in a shielded cover made of lead and copper (Fig. 10a).

UNIVERSITY OF SILESIA IN KATOWICE

Fig. 10 (a) rock sample placed in the Marinelli container during measurement with the HPGe detector, (b) crushed rock samples, (c) rock samples in Marinelli containers.

Hall ID (name of sample)	Measu- rement method	Equipment type		Collection period	226p	Verage results [Bq/kg]	*
					ка	ка	·~K
Rock sample 1			20	4.9 days	6.2±0.2	0.19±0.02	15.4±0.3
Rock sample 2				9.9 days	0.94±0.04	0.20±0.02	7.6±0.2
Rock sample 3	Gamma			4.2 days	1.0 ±0.1	0.27±0.05	9.2±0.4
Rock sample 4	spectro-	HPGe		3.0 days	1.1 ±0.1	0.20±0.04	7.2±0.4
Rock sample 5	metry	detector		6.0 days	19.3±0.7	0.46±0.08	8.6±0.3
Rock sample 6				6.0 days	0.63±0.03	0.19±0.03	6.1±0.2
Rock sample 7				3.9 days	21.1±0.7	0.60±0.10	11.4±0.5

Tab. 9 Results of radium and potassium concentration in rock samples.

*data are presented in K.Szkliniarz et al., Characteristics of Natural Background Radiation in the Polkowice - Sieroszowice Mine, Poland Energies (2021) 14, 4261.

MPOWERING INDERGROUND ABORATORIES IETWORK USAGE

Gamma-ray spectra:

Fig. 11 Gamma-ray spectrum of a rock sample 1.

Fig. 12 Gamma-ray spectrum of a rock sample 2.

EMPOWERING UNDERGROUND LABORATORIES NETWORK USAGE

Fig. 13 Gamma-ray spectrum of a rock sample 3.

Fig. 14 Gamma-ray spectrum of a rock sample 4.

EMPOWERING JNDERGROUND LABORATORIES NETWORK USAGE

Fig. 15 Gamma-ray spectrum of a rock sample 5.

Fig. 16 Gamma-ray spectrum of a rock sample 6.

EMPOWERING JNDERGROUND LABORATORIES NETWORK USAGE

b. Uranium concentration in rock samples

• Description of the performed chemical procedure

The concentration of uranium ²³⁴U and ²³⁸U isotopes in the rock samples were determined by semiconductor alpha spectrometry and 7401VR (Canberra, USA) (**Fig. 18**a) and Alpha AnalystTM (Mirion Technologies (Canberra), Inc., USA) spectrometers (**Fig. 18**b). A radiochemical procedure was applied to prepare an alpha spectrometric source before measurement. For this purpose, wet mineralization of the rock sample was performed using hot acids: HF, HNO₃, HCl with H₃BO₃. Uranium was pre-concentrated with iron and co-precipitated at pH 9. The separation of U was performed using the anion exchange resin Dowex 1×8 (Cl- type, 200-400 mesh) based on a procedure worked out by Suomela (1993). The spectrometric source was prepared by coprecipitation of U with NdF₃ and deposition on polypropylene disks (0,1 µm) (Pall Corporation).

References:

J, Suomela, Method for determination of U-isotopes in water, Swedish Radiation Institute, Stockholm, SSI-rapport, 0282-4434, 93:14 (1993),

Fig. 18 (a) The alpha spectrometer 7401VR (Canberra, USA), (b) The alpha spectrometer Alpha Analyst[™] (Mirion Technologies (Canberra), Inc., USA).

• Information about measurement and results

Hall ID (name	Measu- rement	Equipment type	Collection period	Limit of detection	Average results* [Bq/kg]		ratio ²³⁴ U/ ²³⁸ U	U [ppm]
of the sample)	method				²³⁴ U	²³⁸ U		
rock sample 1					8.99±0.36	9.14±0.36	0.98±0.06	0.74±0.03
rock sample 2				0.4 mBa/l	1.27±0.12	1.24±0.12	1.03±0.14	0.10±0.01
rock sample 3		spectrometer		for both	1.22±0.12	1.30±0.13	0.94±0.13	0.11±0.01
rock sample 4	Alpha spectro-	7401VR (Canberra,	2 days	isotopes and 0.5 I	1.54±0.12	1.55±0.12	0.99±0.11	0.13±0.01
rock sample 5	scopy	USA)		initial	22.48±0.64	23.29±0.66	0.96±0.04	1.89±0.05
rock sample 6				volume	0.84±0.08	0.82±0.08	1.02±0.14	0.07±0.01
rock sample 7					24.75±0.74	24.37±0.73	1.02±0.04	1.97±0.06

Tab. 10 Results of uranium radioisotopes concentration in rock samples.

*data are presented in K.Szkliniarz et al., Characteristics of Natural Background Radiation in the Polkowice - Sieroszowice Mine, Poland Energies (2021) 14, 4261.

APOWERING NDERGROUND BORATORIES

Alpha spectrum:

Fig. 19 The alpha spectrum of a rock sample 1 – Polkowice-Sieroszowice mine.

Polkowice-Sieroszowice mine – rock sample 2

Fig. 20 The alpha spectrum of a rock sample 2 – Polkowice-Sieroszowice mine.

Fig. 21 The alpha spectrum of a rock sample 3 – Polkowice-Sieroszowice mine.

Polkowice-Sieroszowice mine – rock sample 4

Fig. 22 The alpha spectrum of a rock sample 4 – Polkowice-Sieroszowice mine.

MPOWERING NDERGROUND ABORATORIES

Fig. 23 The alpha spectrum of a rock sample 5 – Polkowice-Sieroszowice mine.

Polkowice-Sieroszowice mine – rock sample 6

Fig. 24 The alpha spectrum of a rock sample 6 – Polkowice-Sieroszowice mine.

Fig. 25 The alpha spectrum of a rock sample 7 – Polkowice-Sieroszowice mine.

UNIVERSITY OF SILESIA

IN KATOWICE

c. Neutron activation of the rock sample

Information about measurement and results

Before the measurements, the rock samples were dried, crushed, and mixed. The grain diameter of the crushed rock sample was less than 1 mm. Then the sample was placed in a plastic bag and activated by neutron flux from a ²⁵²Cf source (**Fig. 26**a,c) for a period of 45 days. Immediately after activation, the gamma-ray spectrum was measured by gamma spectroscopy with a lead-shielded HPGe detector (**Fig. 26**b). Measurements were carried out in several cycles, in short cycles to determine the short-lived isotopes produced during the activation of the sample by neutrons, and in long cycles to determine the long-lived isotopes.

MPOWERING INDERGROUND ABORATORIES IFTWORK USAGE

Fig. 26 (a) source (²⁵²Cf) of neutron activation, (b) crushed rock sample after neutron activation placed on the HPGe detector, (c) crushed rock sample after neutron activation.

• Information about measurement and results

Hall ID (name of the	Measure- ment method	Equipment type	Detection relative efficiency	Collection period	Source of neutron activation	Neutron flux of the	Activated isotopes
sample)			[%]			source	
rock	Gamma	HPGe	20	Short	californium	10 ⁵	²⁴ Na
sample 6	spectrometry	detector		measurements	(²⁵² Cf),	n/cm²/s	⁵⁶ Mn
				and long			
				measurements			
				by a few days			

Tab. 11 Neutron activation results of the rock sample from Polkowice-Sieroszowice mine.

Analysis of rock sample, which underwent neutron activation.

Tab.	12 Comparison of	of counts per se	cond for a rock	sample k	pefore and	d after	neutron	activation	of a	rock sa	mple.
						0					

Isotope	Energy [keV]	Counts per second				
		Rock sample before neutron activation	Rock sample 5.3 h after neutron activation	Rock sample 94.2 h after neutron activation		
²¹⁰ Pb	46.5	0.0025	-	0.0034		

EMPOWERING UNDERGROUND LABORATORIES NETWORK USAGE

²³⁴ Th	63.3	0.0045	0.0134	0.0047
X Pb Kα2	72.8	0.0011	-	0.0016
X:Pb Kα1	74.97	0.0049	0.0208	0.0068
X:Bi Kα1	77.12	0.0047	0.0266	0.0085
X: Pb Kβ3	84.45	-	-	0.0025
X:Bi Kβ1	87.34	0.0018	0.0098	0.0033
Χ Βί Κβ2	89.8	0.0006	0.0040	0.0017
²³⁴ Th	92.59	0.0091	0.0387	0.0128
²³⁵ U	143.8	0.0013	-	0.0014
²³⁵ U	185.7	0.0075	0.0349	0.0100
²²⁷ Th	236	0.0002	-	-
²¹² Pb	238.63	0.0054	0.0129	0.0037
²¹⁴ Pb	241.98	0.0020	0.0186	0.0048
²⁰⁸ TI	277.4	0.0001	-	-
²¹⁴ Pb	295.21	0.0044	0.0371	0.0098
²¹² Pb	300.1	0.0002	-	-
²³³ Pa	312.2	-	0.0014	-
²²⁸ Ac	332.4	0.0001	-	-
²²⁸ Ac	338.3	0.0008	-	0.0009
²¹⁴ Pb	351.92	0.0084	0.0611	0.0169
²¹⁴ Bi	387	-	0.0051	-
²²⁸ Ac	463	0.0001	-	-
²⁰⁸ TI	510.77	0.0085	0.0335	0.0098
²⁰⁸ TI	583.2	0.0019	-	0.0010
²¹⁴ Bi	609.31	0.0063	0.0424	0.0121
²¹⁴ Bi	665.5	-	-	0.0002
²¹² Bi	727.2	0.0004	-	-
²¹⁴ Bi	768.36	0.0007	0.0047	0.0012
²¹² Bi	785.4	0.0001	-	-
²²⁸ Ac	795	-	-	0.0001
⁵⁵ Mn(n,γ) ⁵⁶ Mn	846.8	-	0.0013	-
²²⁸ Ac	911.2	0.0013	-	0.0006
²¹⁴ Bi	934.1	0.0002	-	0.0006
²²⁸ Ac	964.8	0.0002	-	-
²²⁸ Ac	969	0.0005	-	0.0004
^{234m} Pa	1001.03	0.0003	0.0015	0.0004
²²⁸ Ac	1033.2	-	-	0.00003
²¹⁴ Bi	1120.29	0.0014	0.0088	0.0025
²¹⁴ Bi	1155.2	-	-	0.0002
²¹⁴ Bi	1238.11	0.0005	0.0046	0.0010

²³ Na(n,γ)Na	1368.6	-	0.0273	0.0026
²¹⁴ Bi	1377.67	0.0004	0.0028	0.0006
²¹⁴ Bi	1408	0.0002	-	0.0003
⁴⁰ K	1460.83	0.0080	0.0164	0.0053
²¹⁴ Bi	1509.2	0.0002	-	0.0002
²²⁸ Ac	1588.2	-	-	0.0001
²⁰⁸ TI (DEP)	1592.5	0.0002	-	-
²¹⁴ Bi	1661.3	-	-	0.0002
²¹⁴ Bi	1729.6	0.0003	-	0.0005
²¹⁴ Bi	1764.5	0.0013	0.0077	0.0021
²¹⁴ Bi	1847.4	-	-	0.0003
²⁰⁸ TI (DEP)	2103.5	0.0002	-	-
²¹⁴ Bi	2118.6	-	-	0.0001
²¹⁴ Bi	2204.21	0.0004	0.0017	0.0005
²¹⁴ Bi	2447.9	0.0000	-	0.0001
²⁰⁸ TI	2614.7	0.0016	0.0040	0.0012

Gamma-ray spectrum:

EMPOWERING JNDERGROUND LABORATORIES

Fig. 28 Gamma-ray spectrum of the rock sample measured 18.3 h after neutron activation.

Fig. 29 Gamma-ray spectrum of the rock sample measured 42.5 h after neutron activation.

MPOWERING NDERGROUND ABORATORIES FTWORK USAGE

Fig. 30 Gamma-ray spectrum of the rock sample measured 80 h after neutron activation.

Fig. 31 Gamma-ray spectrum of the rock sample measured 94.2 h after neutron activation.