

# Scheme of GIG Experimental Mine 'Barbara' devoted to natural background radiation (NBR) characterization

Author: Katarzyna Szkliniarz, Jan Kisiel University of Silesia, Poland









## Contents

| 1.    | General information                                   | 7  |
|-------|-------------------------------------------------------|----|
| 2.    | Measurements of the NBR in Underground Laboratory     | 8  |
| a.    | In-situ gamma-ray measurement                         | 9  |
| b.    | Measurements of the radon concentration in air        | 16 |
| с.    | Measurements of the neutron flux                      | 18 |
| 3. La | aboratory analyses of the water samples               | 21 |
| a.    | Uranium concentration in water samples                | 24 |
| 4. La | aboratory analyses of the rock samples                | 29 |
| а.    | Radium and potassium concentration in rock samples    | 31 |
| b.    | Uranium concentration in rock samples                 | 46 |
| с.    | Neutron activation of the rock sample                 | 50 |
| 5. La | aboratory analyses of the sediment samples            | 59 |
| a. R  | adium and potassium concentration in sediment samples | 62 |







# **Figures**

| Fig. 1 Scheme of the workings where the in-situ measurements were performed                    |
|------------------------------------------------------------------------------------------------|
| Fig. 2 The geometry for modeling the detection efficiency, obtained with the use of Geometry   |
| Composer v.4.2.1 (Canberra Industries, Inc.). 10                                               |
| Fig. 3 Schematic plan of the blind chamber excavation with the marked site where the in-situ   |
| gamma-ray measurement was performed                                                            |
| Fig. 4 Gamma-ray spectrum from a blind chamber excavation site                                 |
| Fig. 5 Schematic plan of the blind chamber excavation site with the marked sites where the     |
| measurements of the radon concentration in air were performed17                                |
| Fig. 6 Plot of radon concentration in the air in EM 'Barbara' mine – blind chamber excavation. |
|                                                                                                |
| Fig. 7 Schematic plan of neutron detector located in the blind chamber excavation              |
| Fig. 8 The recorded spectrum of amplitudes before and after the application cuts               |
| Fig. 9 Diagram of the 30 m level, layer 310, where water, sediment, carbon, stone, slate, and  |
| sandstone samples were collected for laboratory analysis. Part one                             |
| Fig. 10 Diagram of the 30 m level, layer 310, where water, sediment, carbon, stone, slate, and |
| sandstone samples were collected for laboratory analysis. Part two                             |
| Fig. 11 Diagram of the 30 m level, layer 310, where water, sediment, carbon, stone, slate, and |
| sandstone samples were collected for laboratory analysis. Part three                           |
| Fig. 12 Water sampling site from EM 'Barbara'                                                  |
| Fig. 13 (a) the spectrometer 7401VR (Canberra, USA), (b) the alpha spectrometer Alpha          |
| Analyst <sup>™</sup> (Mirion Technologies (Canberra), Inc., USA)                               |
| Fig. 14 The alpha spectrum of a water sample – EM 'Barbara'- water sample loc.1                |
| Fig. 15 The alpha spectrum of a water sample – EM 'Barbara'- water sample loc.1,2bis           |
| Fig. 16 The alpha spectrum of a water sample – EM 'Barbara' - water sample loc.3               |
| Fig. 17 The alpha spectrum of a water sample – EM 'Barbara' - water sample loc.4               |
| Fig. 18 The alpha spectrum of a water sample – EM 'Barbara' - water sample loc.5               |
| Fig. 19 The alpha spectrum of a water sample – EM 'Barbara'- water sample loc.6                |
| Fig. 20 The alpha spectrum of a water sample – EM 'Barbara'- water sample loc.8                |
| Fig. 21 (a) place of rock sampling and in-situ measurements in the EM 'Barbara' (sample 1-18), |
| (b) approximate sampling location, (c) diagram of the place where the samples were taken. 29   |
| Fig. 22 (a) diagram of the place where the samples were taken (b) localization 1 - stone       |
| sampling, (c) localization 2 – stone and carbon sampling                                       |
| Fig. 23 (a) diagram of the place where the samples were taken (b) localization 6 – slate and   |
| sandstone sampling, localization 7 – carbon sampling                                           |
| Fig. 24 (a) HPGe detector with shielding, (b) crushed rock sample no. 11, (c) rock sample in   |
| Marinelli containers                                                                           |
| Fig. 25 Stone sample from localization 1, carbon sample from localization 7, slate and         |
| sandstone sample from localization 6                                                           |
| Fig. 26 Gamma-ray spectrum of a rock sample 1                                                  |
| Fig. 27 Gamma-ray spectrum of a rock sample 2                                                  |
| Fig. 28 Gamma-ray spectrum of a rock sample 3                                                  |





| UNIVERSITY OF SILESIA<br>IN KATOWICE |
|--------------------------------------|
| IN KATOWICE                          |

| Fig. 29 Gamma-ray spectrum of a rock sample 4.                                                          | .35  |
|---------------------------------------------------------------------------------------------------------|------|
| Fig. 30 Gamma-ray spectrum of a rock sample 5.                                                          | .36  |
| Fig. 31 Gamma-ray spectrum of a rock sample 6.                                                          | .36  |
| Fig. 32 Gamma-ray spectrum of a rock sample 7.                                                          | .37  |
| Fig. 33 Gamma-ray spectrum of a rock sample 8.                                                          | .37  |
| Fig. 34 Gamma-ray spectrum of a rock sample 9.                                                          | .38  |
| Fig. 35 Gamma-ray spectrum of a rock sample 10.                                                         | .38  |
| Fig. 36 Gamma-ray spectrum of a rock sample 11.                                                         | . 39 |
| Fig. 37 Gamma-ray spectrum of a rock sample 12.                                                         | . 39 |
| Fig. 38 Gamma-ray spectrum of a rock sample 13.                                                         | .40  |
| Fig. 39 Gamma-ray spectrum of a rock sample 14.                                                         | .40  |
| Fig. 40 Gamma-ray spectrum of a rock sample 15.                                                         | .41  |
| Fig. 41 Gamma-ray spectrum of a rock sample 16.                                                         | .41  |
| Fig. 42 Gamma-ray spectrum of a rock sample 17.                                                         | .42  |
| Fig. 43 Gamma-ray spectrum of a rock sample 18.                                                         | .42  |
| Fig. 44 Gamma-ray spectrum of a stone sample loc.1.                                                     | .43  |
| Fig. 45 Gamma-ray spectrum of a stone sample loc.2.                                                     | .43  |
| Fig. 46 Gamma-ray spectrum of a carbon sample loc.2.                                                    | .44  |
| Fig. 47 Gamma-ray spectrum of a slate sample loc.6.                                                     | .44  |
| Fig. 48 Gamma-ray spectrum of a sandstone sample loc.6.                                                 | .45  |
| Fig. 49 Gamma-ray spectrum of a carbon sample loc.7.                                                    | . 45 |
| Fig. 50 (a) The alpha spectrometer 7401VR (Canberra, USA), (b) The alpha spectrometer Alp               | ha   |
| Analyst™ (Mirion Technologies (Canberra), Inc., USA)                                                    | .46  |
| Fig. 51 The alpha spectrum of a rock sample 1 – EM 'Barbara'                                            | .47  |
| Fig. 52 The alpha spectrum of a rock sample 2 – EM 'Barbara'                                            | .48  |
| Fig. 53 The alpha spectrum of a rock sample 3 – EM 'Barbara'                                            | .48  |
| Fig. 54 The alpha spectrum of a rock sample 4 – EM 'Barbara'                                            | .49  |
| Fig. 55 The alpha spectrum of a rock sample 5 – EM 'Barbara'                                            | .49  |
| Fig. 56 The alpha spectrum of a rock sample 6 – EM 'Barbara'                                            | . 50 |
| Fig. 57 (a) HPGe detector, (b) source ( <sup>252</sup> Cf) of neutron activation, (c) rock sample after |      |
| neutron activation for gamma-ray spectrometry.                                                          | .51  |
| Fig. 58 Gamma-ray spectrum of a rock sample (sample 11) 3.7 h after neutron activation                  | .56  |
| Fig. 59 Gamma-ray spectrum of a rock sample (sample 11) 25.3 h after neutron activation                 | .56  |
| Fig. 60 Gamma-ray spectrum of a rock sample (sample 11) 67 h after neutron activation                   | .57  |
| Fig. 61 Gamma-ray spectrum of a rock sample (sample 11) 113.9 h after neutron activation.               | .57  |
| Fig. 62 Gamma-ray spectrum of a rock sample (sample 11) 168.7 h after neutron activation.               | .58  |
| Fig. 63 (a) diagram of the place where the samples were taken (b) localization 1 - sediment             |      |
| sampling, (c) localization 2 - sediment sampling.                                                       | .60  |
| Fig. 64 (a) diagram of the place where the samples were taken (b) localization 3 - sediment             |      |
| sampling, (c) localization 4 - sediment sampling, (d) localization 5 - sediment sampling                | .61  |
| Fig. 65 (a) diagram of the place where the samples were taken (b) localization 8 - sediment             |      |
| sampling                                                                                                | . 62 |
| Fig. 66 (a) HPGe detector with shielding, (b) sediment sample in plastic container and (c)              |      |
| Marinelli beaker, (d) sediment sample preparation steps (drying).                                       | . 63 |







| Fig. 67 Gamma-ray spectrum of a sediment sample loc.1  | 64 |
|--------------------------------------------------------|----|
| Fig. 68 Gamma-ray spectrum of a sediment sample loc.2  | 64 |
| Fig. 69 Gamma-ray spectrum of a sediment sample loc.3. | 65 |
| Fig. 70 Gamma-ray spectrum of a sediment sample loc.4. | 65 |
| Fig. 71 Gamma-ray spectrum of a sediment sample loc.5. | 66 |
| Fig. 72 Gamma-ray spectrum of a sediment sample loc.8. | 66 |
| Fig. 73 Gamma-ray spectrum of a sediment sample loc.9  | 67 |



MPOWERING NDERGROUND ABORATORIES FTWORK USAG





## **Tables**







# 1. General information

Name of Underground Laboratory: GIG Experimental Mine 'Barbara' (https://www.gig.eu/pl/kd-barbara)

Localization (country/city): Poland/Mikołów

Coordinates to the facility: 50° 10' 47.1" North 18° 55' 58.6" East

Altitude of the facility: about 287 m



Name of the responsible scientist/measurer: University of Silesia, Poland: Jan Kisiel Agata Walencik-Łata Katarzyna Szkliniarz

National Centre for Nuclear Research, Poland: Karol Jędrzejczak Jacek Szabelski

Place where the data is stored (e.g. file in a drawer X, internal data cloud etc.): pendrive, external memory,







## 2. Measurements of the NBR in Underground Laboratory

Description of the sites where the in-situ measurements were performed:

| Hall ID    | Dimension of the        | Air volume  | Depth below | <b>Environmental condition</b> |  |  |  |  |
|------------|-------------------------|-------------|-------------|--------------------------------|--|--|--|--|
|            | cavern [height x length | exchange    | surface     | (average temperature           |  |  |  |  |
|            | x width] (m)            | rate /      | [m w.e.]    | /average humidity)             |  |  |  |  |
|            |                         | Ventilation |             |                                |  |  |  |  |
|            |                         | [m³/s]      |             |                                |  |  |  |  |
| blind      | 2.65 x 30 x 3           | 30-40       | 122         | 12 °C / 70%                    |  |  |  |  |
| chamber    |                         |             |             |                                |  |  |  |  |
| excavation |                         |             |             |                                |  |  |  |  |

Tab. 1 Description of the sites where the in-situ measurements were performed.



Fig. 1 Scheme of the workings where the in-situ measurements were performed.





UNIVERSITY OF SILESIA



#### a. In-situ gamma-ray measurement

#### Information about measurement

The in-situ measurement of the natural background radiation (NBR) was performed by using portable gamma-ray spectroscopy and HPGe (high-purity germanium) detector. For spectra registration and analysis, the multichannel analyzer and special software packages were applied. Energy calibration (covering the range of 14 – 2506 keV) was performed using a set of sealed radioactive sources (1 cm in diameter and about 40 kBq activity): <sup>133</sup>Ba, <sup>137</sup>Cs, <sup>54</sup>Mn, <sup>57</sup>Co, <sup>109</sup>Cd, <sup>22</sup>Na and <sup>60</sup>Co. The efficiency calibration was performed with the use of a geometry of room/box with internal surface contamination, modelled in Geometry Composer software applying ISOCSTM software and monoenergetic photons covering the energy range of 10 – 3300 keV (an adequate measuring range). The monoenergetic photon flux density was estimated from the photopeak areas employing detection efficiency curve  $\varepsilon(E)$ , Ge crystal surface area and lifetime of spectrum acquisition. An effective dose was estimated using photon flux-to-dose conversion coefficients for isotropic irradiation with monoenergetic photons, interpolated on the basis of data provided by the International Commission on Radiological Protection (ICRP) in report 116 using a third-degree Lagrange formula. Identification of in-situ registered radioisotopes was based on the photopeaks' energies.

## Measurements performed in free space

#### Efficiency modeling

#### Horizontal orientation of spectrometer

Geometry for efficiency calibration was based on room/box with internal surface contamination (software template) with dimensions of investigated localization. Radioactivity was assumed to be distributed equally between 5 out of 6 walls.



MPOWERING NDERGROUND ABORATORIES FTWORK USAGE







Fig. 2 ⊤he geometry for modeling the detection efficiency, obtained with the use of Geometry Composer v.4.2.1 (Canberra Industries, Inc.).

Description of detector settings during measurement (where the detector was placed (near wall, floor....):

detector position (horizontal, vertical): horizontal position

distance from the walls: 30 cm

measurement of the gamma-ray spectrum from the wall, floor, concrete, other: **30 cm in front of the nearest wall (the centre of the germanium crystal was 25 cm above the floor)** use of a collimator during the measurement (if yes, what): **no** 







• <u>Results</u>

Tab. 2 Results of in-situ gamma-ray measurements.

| Hall ID (and place)            | Measurement<br>method | Equipment type                                                                                                                                                                                           | Detection<br>relative<br>efficiency<br>[%] | Energy range<br>[keV] | Results<br>(integrated<br>counts per<br>second) [cps] |
|--------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------|-------------------------------------------------------|
| blind<br>chamber<br>excavation | Gamma<br>spectroscopy | -GR4020 portable<br>spectrometer,<br>-HPGe coaxial detector,<br>-InSpector™ 2000<br>multichannel -analyser (for<br>data collecting),<br>-Genie™ 2000 v.3.2.1 software<br>package (for spectra analysing) | 40                                         | 7-3150                | 350.00±0.05*                                          |

\*data are presented in A. Walencik-Łata, et al., Characteristics of Natural Background Radiation in the GIG Experimental Mine 'Barbara', Poland. Energies 2022, 15, 685

Schematic plan of the Hall with marked sites where the measurements were performed.



Fig. 3 Schematic plan of the blind chamber excavation with the marked site where the in-situ gamma-ray measurement was performed.











Fig. 4 Gamma-ray spectrum from a blind chamber excavation site.

#### Other relevant information:

| Tab. | 3 Results of | gamma-ray fl | ux, gamm | na-ray dose, | and contri | bution o | f the | radioisotopes | for the | investigated | localizations. |
|------|--------------|--------------|----------|--------------|------------|----------|-------|---------------|---------|--------------|----------------|
|      |              |              |          |              |            |          |       |               |         |              |                |

| Hall ID     | Gamma flux                          | Gamma-ray dose | Radioisotopes that have the main |                   |               |  |  |
|-------------|-------------------------------------|----------------|----------------------------------|-------------------|---------------|--|--|
| (and place) | [cm <sup>-2</sup> s <sup>-1</sup> ] | [µSv/h]        | contributions ineffective dose   |                   |               |  |  |
|             |                                     |                | Decay chain                      | Isotope           | Concentration |  |  |
|             |                                     |                |                                  |                   | [%]           |  |  |
| blind       | 17.6 ± 1.9*                         | 0.200 ± 0.029* | -                                | <sup>40</sup> K   | 46.7          |  |  |
| chamber     |                                     |                | Uranium                          | <sup>214</sup> Bi | 25.1          |  |  |
| excavation  |                                     |                | Thorium                          | <sup>208</sup> TI | 15.2          |  |  |
|             |                                     |                | Thorium                          | <sup>228</sup> Ac | 6.6           |  |  |
|             |                                     |                | Uranium                          | <sup>214</sup> Pb | 3.3           |  |  |

\*data are presented in A. Walencik-Łata, et al., Characteristics of Natural Background Radiation in the GIG Experimental Mine 'Barbara', Poland. Energies 2022, 15, 685







Qualitative analysis of gamma-ray spectra registered in underground laboratory.

Qualitative analysis of gamma ray spectra registered in underground laboratory (LT - live time, measuring time; Area – net area of the photopeak on the spectrum gamma ray) (SEP – single escape peak, DEP – double escape peak)

Tab. 4 Qualitative analysis of gamma-ray spectrum registered in EM 'Barbara' mine – blind chamber excavation.

| True Energy [keV] | Isotope               | CPS = Area/LT | Δ CPS  |
|-------------------|-----------------------|---------------|--------|
| 12.97             | X: Th L <sub>α1</sub> | 0.2643        | 0.0054 |
| 46.5              | <sup>210</sup> Pb     | 0.2510        | 0.0099 |
| 51.62             | <sup>239</sup> Pu     | 0.1364        | 0.0106 |
| 74.97             | X:Pb K <sub>α1</sub>  | 1.1055        | 0.0297 |
| 77.12             | X:Bi K <sub>α1</sub>  | 2.3414        | 0.0349 |
| 87.34             | X:Bi K <sub>β1</sub>  | 0.8424        | 0.0156 |
| 92.59             | <sup>234</sup> Th     | 0.3343        | 0.0133 |
| 129.07            | <sup>228</sup> Ac     | 0.1179        | 0.0151 |
| 186.1             | <sup>226</sup> Ra     | 0.2052        | 0.0131 |
| 209.25            | <sup>228</sup> Ac     | 0.1019        | 0.0111 |
| 238.63            | <sup>212</sup> Pb     | 1.1381        | 0.0072 |
| 241.98            | <sup>214</sup> Pb     | 0.6409        | 0.0061 |
| 258.87            | <sup>214</sup> Pb     | 0.0448        | 0.0096 |
| 270.24            | <sup>228</sup> Ac     | 0.1196        | 0.0054 |
| 277.35            | <sup>208</sup> TI     | 0.0661        | 0.0049 |
| 295.21            | <sup>214</sup> Pb     | 1.0995        | 0.0057 |
| 300.09            | <sup>212</sup> Pb     | 0.0968        | 0.0037 |
| 327.6             | <sup>228</sup> Ac     | 0.0673        | 0.0072 |
| 338.32            | <sup>228</sup> Ac     | 0.2643        | 0.0088 |
| 351.92            | <sup>214</sup> Pb     | 1.9431        | 0.0098 |
| 387.0             | <sup>214</sup> Bi     | 0.0279        | 0.0069 |
| 409.46            | <sup>228</sup> Ac     | 0.0299        | 0.0058 |
| 438.83            | <sup>40</sup> K (DEP) | 0.0163        | 0.0057 |
| 463.01            | <sup>228</sup> Ac     | 0.0996        | 0.0062 |
| 480.43            | <sup>214</sup> Pb     | 0.0093        | 0.0023 |
| 487.08            | <sup>214</sup> Pb     | 0.0135        | 0.0025 |
| 510.77            | <sup>208</sup> TI     | 0.2703        | 0.0064 |
| 562.5             | <sup>228</sup> Ac     | 0.0170        | 0.0046 |
| 583.19            | <sup>208</sup> TI     | 0.5853        | 0.0065 |
| 609.31            | <sup>214</sup> Bi     | 1.6776        | 0.0074 |
| 665.45            | <sup>214</sup> Bi     | 0.0474        | 0.0022 |





| MPOWERING  |  |
|------------|--|
| NDERGROUND |  |
|            |  |
|            |  |
|            |  |

| 719.86 $^{214}$ Bi0.01420.0019727.2 $^{212}$ Bi0.12910.0026755.32 $^{228}$ Ac0.01210.0044768.36 $^{214}$ Bi0.16780.0055785.91 $^{214}$ Pb0.05200.0020794.95 $^{228}$ Ac0.07520.0021806.17 $^{214}$ Bi0.04130.0019 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 727.2212Bi0.12910.0026755.32228Ac0.01210.0044768.36214Bi0.16780.0055785.91214Pb0.05200.0020794.95228Ac0.07520.0021806.17214Bi0.04130.0019                                                                         |
| 755.32228 Ac0.01210.0044768.36214 Bi0.16780.0055785.91214 Pb0.05200.0020794.95228 Ac0.07520.0021806.17214 Bi0.04130.0019                                                                                          |
| 768.36214Bi0.16780.0055785.91214Pb0.05200.0020794.95228Ac0.07520.0021806.17214Bi0.04130.0019                                                                                                                      |
| 785.91 <sup>214</sup> Pb         0.0520         0.0020           794.95 <sup>228</sup> Ac         0.0752         0.0021           806.17 <sup>214</sup> Bi         0.0413         0.0019                          |
| 794.95 <sup>228</sup> Ac         0.0752         0.0021           806.17 <sup>214</sup> Bi         0.0413         0.0019                                                                                           |
| 806.17 <sup>214</sup> Bi 0.0413 0.0019                                                                                                                                                                            |
|                                                                                                                                                                                                                   |
| 835./1 <sup>22°</sup> Ac 0.0210 0.0019                                                                                                                                                                            |
| 839.03 <sup>214</sup> Pb 0.0280 0.0021                                                                                                                                                                            |
| 860.56 <sup>208</sup> TI 0.0771 0.0046                                                                                                                                                                            |
| 911.21 <sup>228</sup> Ac 0.4369 0.0056                                                                                                                                                                            |
| 934.06 <sup>214</sup> Bi 0.1020 0.0048                                                                                                                                                                            |
| 949.83 <sup>40</sup> K (SEP) 0.0311 0.0042                                                                                                                                                                        |
| 964.77 <sup>228</sup> Ac 0.0947 0.0020                                                                                                                                                                            |
| 968.97 <sup>228</sup> Ac 0.2595 0.0027                                                                                                                                                                            |
| 1001.03 <sup>234</sup> Pa 0.0093 0.0029                                                                                                                                                                           |
| 1051.96 <sup>214</sup> Bi 0.0115 0.0037                                                                                                                                                                           |
| 1069.96 <sup>214</sup> Bi 0.0084 0.0015                                                                                                                                                                           |
| 1078.62 <sup>212</sup> Bi 0.0089 0.0015                                                                                                                                                                           |
| 1120.29 <sup>214</sup> Bi 0.4043 0.0029                                                                                                                                                                           |
| 1133.66 <sup>214</sup> Bi 0.0038 0.0016                                                                                                                                                                           |
| 1155.19 <sup>214</sup> Bi 0.0482 0.0039                                                                                                                                                                           |
| 1238.11 <sup>214</sup> Bi 0.1641 0.0048                                                                                                                                                                           |
| 1253.5 <sup>214</sup> Bi (SEP) 0.0046 0.0029                                                                                                                                                                      |
| 1280.98 <sup>214</sup> Bi 0.0339 0.0036                                                                                                                                                                           |
| 1377.67 <sup>214</sup> Bi 0.0980 0.0016                                                                                                                                                                           |
| 1385.31 <sup>214</sup> Bi 0.0197 0.0010                                                                                                                                                                           |
| 1401.5 <sup>214</sup> Bi 0.0336 0.0012                                                                                                                                                                            |
| 1407.98 <sup>214</sup> Bi 0.0618 0.0014                                                                                                                                                                           |
| 1460.83 <sup>40</sup> K 4.2242 0.0077                                                                                                                                                                             |
| 1495.9 <sup>228</sup> Ac 0.0127 0.0008                                                                                                                                                                            |
| 1501.577 <sup>228</sup> Ac 0.0078 0.0008                                                                                                                                                                          |
| 1509.23 <sup>214</sup> Bi 0.0555 0.0012                                                                                                                                                                           |
| 1538.5 <sup>214</sup> Bi 0.0138 0.0009                                                                                                                                                                            |
| 1543.32 <sup>214</sup> Bi 0.0069 0.0007                                                                                                                                                                           |
| 1580.54 <sup>228</sup> Ac 0.0224 0.0009                                                                                                                                                                           |
| 1588.21 <sup>228</sup> Ac 0.0506 0.0012                                                                                                                                                                           |
| 1592.53 <sup>208</sup> TI (DEP) 0.0420 0.0011                                                                                                                                                                     |
| 1599.31 <sup>214</sup> Bi 0.0092 0.0007                                                                                                                                                                           |
| 1620.5 <sup>212</sup> Bi 0.0220 0.0008                                                                                                                                                                            |
| 1630.63 <sup>228</sup> Ac 0.0255 0.0008                                                                                                                                                                           |

UNIVERSITY OF SILESIA IN KATOWICE

4



| 1638.28 | <sup>228</sup> Ac       | 0.0088 | 0.0007 |
|---------|-------------------------|--------|--------|
| 1661.28 | <sup>214</sup> Bi       | 0.0259 | 0.0018 |
| 1683.99 | <sup>214</sup> Bi       | 0.0053 | 0.0006 |
| 1693.21 | <sup>214</sup> Bi (DEP) | 0.0073 | 0.0007 |
| 1729.6  | <sup>214</sup> Bi       | 0.0669 | 0.0011 |
| 1764.5  | <sup>214</sup> Bi       | 0.3440 | 0.0026 |
| 1838.36 | <sup>214</sup> Bi       | 0.0079 | 0.0006 |
| 1847.42 | <sup>214</sup> Bi       | 0.0426 | 0.0009 |
| 1873.16 | <sup>214</sup> Bi       | 0.0087 | 0.0015 |
| 2052.94 | <sup>214</sup> Bi       | 0.0031 | 0.0009 |
| 2103.5  | <sup>208</sup> TI (SEP) | 0.0599 | 0.0010 |
| 2118.55 | <sup>214</sup> Bi       | 0.0253 | 0.0008 |
| 2204.21 | <sup>214</sup> Bi       | 0.0957 | 0.0019 |
| 2293.36 | <sup>214</sup> Bi       | 0.0097 | 0.0015 |
| 2447.86 | <sup>214</sup> Bi       | 0.0286 | 0.0013 |
| 2614.7  | <sup>208</sup> TI       | 0.4453 | 0.0024 |
| 2769.9  | <sup>214</sup> Bi       | 0.0003 | 0.0001 |
| 2880.3  | <sup>214</sup> Bi       | 0.0002 | 0.0001 |
| 2978.9  | <sup>214</sup> Bi       | 0.0003 | 0.0001 |

UNIVERSITY OF SILESIA IN KATOWICE

Apparent radioactivity and effective dose rate calculated on the base of the gamma-ray spectrum.

Tab. 5 Effective dose rate and apparent radioactivity results calculated based on the gamma-ray spectrum for blind chamber excavation site\*.

| Decay chain | Radionuclide       | Effective dose<br>rate [pSv/s] | %<br>contribution | Apparent activity<br>in measuring<br>point [Bq/cm <sup>2</sup> ] |
|-------------|--------------------|--------------------------------|-------------------|------------------------------------------------------------------|
| Uranium     | <sup>234</sup> Th  | 0.025 ± 0.004                  | 0.05              | 3.36 ± 0.59                                                      |
| Thorium     | <sup>228</sup> Ac  | 3.66 ± 0.54                    | 6.6               | $1.45 \pm 0.40$                                                  |
| Uranium     | <sup>226</sup> Ra  | 0.036 ± 0.006                  | 0.06              | 1.89 ± 0.42                                                      |
| Thorium     | <sup>212</sup> Pb  | 0.342 ± 0.049                  | 0.61              | 1.12 ± 0.21                                                      |
| Uranium     | <sup>214</sup> Pb  | 1.85 ± 0.27                    | 3.32              | 2.55 ± 0.51                                                      |
| Thorium     | <sup>208</sup> TI  | 8.43 ± 1.23                    | 15.16             | 0.63 ± 0.18                                                      |
| Uranium     | <sup>214</sup> Bi  | 13.97 ± 2.07                   | 25.13             | 3.26 ± 0.38                                                      |
| Thorium     | <sup>212</sup> Bi  | 0.571 ± 0.085                  | 1.03              | 1.92 ± 0.23                                                      |
| Uranium     | <sup>234m</sup> Pa | $0.032 \pm 0.011$              | 0.06              | 1.23 ± 0.40                                                      |
|             | <sup>40</sup> K    | 26.06 ± 3.70                   | 46.88             | 51.63 ± 5.10                                                     |
|             | <sup>239</sup> Pu  | $0.011 \pm 0.002$              | 0.02              | 19.00 ± 5.06                                                     |
| Uranium:    | <sup>210</sup> Pb  | 0.018 ± 0.003                  | 0.03              | 2.45 ± 0.34                                                      |
|             | X rays             | 0.343 ± 0.049                  | 0.62              |                                                                  |







|          |                  | annihilation    | 0.242 | ± 0.035     | 0.44            |            |              |     |     |
|----------|------------------|-----------------|-------|-------------|-----------------|------------|--------------|-----|-----|
| *data ar | e presented in A | A Walencik-Łata | et al | Characteris | tics of Natural | Background | Radiation in | the | GIO |

\*data are presented in A. Walencik-Łata, et al., Characteristics of Natural Background Radiation in the GIG Experimental Mine 'Barbara', Poland. Energies 2022, 15, 685

# b. Measurements of the radon concentration in air

Information about measurement

Measurements of the radon concentration in the air were performed using the RAD7 radon detector. The measurements were made in cycles.

Description of detector settings during measurement (where the detector was placed (near wall, floor....):

Place of the measurement: in blind chamber excavation, detector was located opposite/near the gamma-ray spectrometer – right corner

Ventilation (on/off): ventilation on and off

Other relevant information (use a drying unit, humidity, temperature, pressure, other): measurement was performed with use a drying unit, humidity 70%, temperature 12°C

• <u>Results</u>

Tab. 6 The results of radon concentration in the air at the EM 'Barbara' mine – blind chamber excavation.

| Hall ID       | Measurement<br>method | Equipment<br>type | Collection<br>period | Average result<br>[Bq/m <sup>3</sup> ] |
|---------------|-----------------------|-------------------|----------------------|----------------------------------------|
|               |                       | RAD7              |                      | 205-34300                              |
| blind chambor | Alpha<br>spectroscopy | electronic        | 9 days (0.5          | (depending on                          |
|               |                       | radon             | - 1 h-long           | the ventilation                        |
| excavation    |                       | detector          | each)                | of the                                 |
|               |                       | (Durridge),       |                      | chamber)                               |

Schematic plan of the Hall with marked sites where the measurements were performed.









Fig. 5 Schematic plan of the blind chamber excavation site with the marked sites where the measurements of the radon concentration in air were performed.

Plot of radon activity concentration in blind chamber excavation.





MPOWERING NDERGROUND ABORATORIES ETWORK USAGI





## c. Measurements of the neutron flux

Information about measurement

The thermal neutron flux was measured using helium counters, i.e., gas proportional counters filled with helium-3 (<sup>3</sup>He). In this type of detector, neutrons are captures by helium nucleus in the reaction: <sup>3</sup>He(n,p)<sup>3</sup>H + 764 keV and the charged products (proton and Tritium) of the reaction appear with kinetic energy 764 keV. This method allows distinguishing neutrons events even with a large background of other types of radiation. The setup consisted of a flat tray of helium counters positioned vertically in a rack, four Centronic counters, and four ZDAJ counters. The data acquisition system (DAQ) was designed and made in NCBJ-Łódź laboratory. DAQ is built in the form of a cassette with eight measurement cards. Each card contains four independent measurement channels, up to 32 input channels in total. Each measurement channel is sampled with a frequency of 10 MHZ by an ADC with a dynamic of 10 bits. DAQ contains a built-in Raspberry Pi computer. Therefore it works as an autonomous system, without the need to connect to an external computer. The analyze the pulse shape (PSD) was applied. PSD allows rejecting disturbances. The PSD analysis was based on the two-dimensional distribution of the maximum pulse amplitude versus the maximum pulse jump on the rising edge.

## Standard method:

a) Type of counters (helium/boron) and name of the manufacturer, counter's dimensions: proportional <sup>3</sup>He counters, Centronic counters (Centronic 50He3/190/50MS), ZDAJ counters (ZDAJ NEM425A50). The counters of both types were steel pipes 50 cm long, but they differed in diameter (5 cm for Centronic and 2.5 cm for ZDAJ) and helium-3 pressure (2 atm for Centronic and 4 atm for ZDAJ).

b) Setup description: number of counters, their distances in a tray etc.:

A flat tray of helium counters was positioned vertically in a rack. The tray was divided into two parts: first, there were four Centronic counters, then there was a 30 cm space, and again four ZDAJ counters. There were 5 cm gaps between the individual counters.

c) Place of measurement: chamber name, distance from walls, large objects nearby and what they are made of (water, polyethylene, graphite, etc.): detection setup for the neutron measurements was placed in the center of blind chamber excavation, a distance few cm from walls
d) Humidity: normal / low / high







• <u>Results</u>

#### Tab. 7 Results of the neutron flux measurements.

| Hall ID    | Collection<br>period | Average neutron counting rate | Dispersion of neutron counting rate | Calculated neutron flux witch error  |
|------------|----------------------|-------------------------------|-------------------------------------|--------------------------------------|
| blind      | 2 weeks              | 16.6 ± 2.8 (for               |                                     | (8.6±1.1)·10 <sup>-6</sup>           |
| chamber    |                      | Centronic) and                |                                     | [cm <sup>-2</sup> s <sup>-1</sup> ]* |
| excavation |                      | 6.8±1.2 (for                  |                                     |                                      |
|            |                      | ZDAJ) neutrons                |                                     |                                      |
|            |                      | per hour*                     |                                     |                                      |

\*data are presented in A. Walencik-Łata, et al., Characteristics of Natural Background Radiation in the GIG Experimental Mine 'Barbara', Poland. Energies 2022, 15, 685

Schematic plan of detector location in the blind chamber excavation.



Fig. 7 Schematic plan of neutron detector located in the blind chamber excavation.







## Distribution of amplitude of signals from <sup>3</sup>He counter:











## **3.** Laboratory analyses of the water samples

Measurements of the concentration of radium and uranium radioisotopes in water samples were carried out in an external laboratory - "Low-level Activity Research Laboratory", Institute of Physics, the University of Silesia in Katowice, Poland.



Fig. 9 Diagram of the 30 m level, layer 310, where water, sediment, carbon, stone, slate, and sandstone samples were collected for laboratory analysis. Part one.









Fig. 10 Diagram of the 30 m level, layer 310, where water, sediment, carbon, stone, slate, and sandstone samples were collected for laboratory analysis. Part two.



Fig. 11 Diagram of the 30 m level, layer 310, where water, sediment, carbon, stone, slate, and sandstone samples were collected for laboratory analysis. Part three.







#### Description of the sites where water samples were taken:

Tab. 8 Description of the sites where water samples were collected.

| Hall ID                | Depth below    | Sites (wall, water gullets, water | Method of the        |
|------------------------|----------------|-----------------------------------|----------------------|
|                        | surface        | reservoir, other)                 | sampling             |
|                        | [m w.e.]       |                                   |                      |
| Localization 1 - water |                |                                   |                      |
| sample 1               |                |                                   |                      |
| Localization 2 - water |                |                                   |                      |
| sample 1,2bis          |                |                                   |                      |
| Localization 3 - water |                |                                   |                      |
| sample 3               |                |                                   |                      |
| Localization 4 - water | 80 (lawar 210) | water gullets,                    | Sampling for         |
| sample 4               | 80 (layer 310) | stagnant water                    | polyethylene bottles |
| Localization 5 - water |                |                                   |                      |
| sample 5               |                |                                   |                      |
| Localization 6 - water |                |                                   |                      |
| sample 6               |                |                                   |                      |
| Localization 8 - water |                |                                   |                      |
| sample 8               |                |                                   |                      |

The samples were acidified immediately after collection to avoid precipitation of radionuclides and adsorption on the walls of the containers.



Fig. 12 Water sampling site from EM 'Barbara'.



MPOWERING NDERGROUND ABORATORIES





#### a. Uranium concentration in water samples

## • <u>Description of the performed chemical procedure</u>

The concentration of uranium <sup>234</sup>U and <sup>238</sup>U isotopes in the water samples were determined by semiconductor alpha spectrometry using a 7401VR spectrometer (Canberra, USA) and an Alpha Analyst<sup>M</sup> (Mirion Technologies (Canberra), Inc., USA) (**Fig. 13**). A radiochemical procedure was applied to prepare an alpha spectrometric source before measurement. The samples were acidified with HNO<sub>3</sub> and spiked with a known amount of <sup>232</sup>U. The separation of U is performed using anion exchange resin Dowex 1×8 (Cl- type, 200-400 mesh) based on a procedure worked out by Suomela (1993). The spectrometric source was prepared by co-precipitation of U with NdF<sub>3</sub> and deposition on polypropylene disks (0.1 µm) (Pall Corporation).

References:

J. Suomela, Method for determination of U-isotopes in water, Swedish Radiation Institute, Stockholm, SSI-rapport, 0282-4434, 93:14 (1993).





Fig. 13 (a) the spectrometer 7401VR (Canberra, USA), (b) the alpha spectrometer Alpha Analyst<sup>™</sup> (Mirion Technologies (Canberra), Inc., USA).







#### • Information about measurement and results

Tab. 9 Results of uranium radioisotopes concentration in water samples from EM 'Barbara'.

| Hall ID (name of        | Measu-            | Equipment                    | Collection | Limit of | Average          | e results        | ratio     | <b>U</b> [µg/l] |
|-------------------------|-------------------|------------------------------|------------|----------|------------------|------------------|-----------|-----------------|
| the sample)             | rement            | type                         | detection  | [mE      | [mBq/l]          |                  |           |                 |
|                         | method            |                              |            |          | <sup>234</sup> U | <sup>238</sup> U |           |                 |
| Water sample loc.1      |                   |                              |            |          | 3.3±0.3          | 2.4±0.2          | 1.39±0.16 | 0.19±0.02       |
| Water sample loc.1,2bis |                   |                              |            |          | 3.9±0.2          | 2.3±0.2          | 1.70±0.18 | 0.18±0.02       |
| Water sample<br>loc.3   |                   | oha<br>ectro-<br>opy<br>USA) | 2-7 days   | for      | 35.4±0.9         | 27.7±0.8         | 1.28±0.05 | 2.24±0.06       |
| Water sample loc.4      | Alpha<br>spectro- |                              |            | 0.5 l    | 5.0±0.3          | 3.7±0.3          | 1.34±0.12 | 0.30±0.02       |
| Water sample<br>loc.5   | scopy             |                              |            | sample   | 2.2±0.2          | 1.0±0.1          | 2.14±0.35 | 0.08±0.01       |
| Water sample loc.6      |                   |                              |            | volume   | 6.2±0.4          | 4.6±0.4          | 1.36±0.14 | 0.37±0.03       |
| Water sample loc.8      |                   |                              |            |          | 1.7±0.1          | 0.7±0.1          | 2.54±0.46 | 0.06±0.01       |

#### Alpha spectrum:



Fig. 14 The alpha spectrum of a water sample – EM 'Barbara'- water sample loc.1.









Fig. 15 The alpha spectrum of a water sample – EM 'Barbara'- water sample loc.1,2bis.



Fig. 16 The alpha spectrum of a water sample – EM 'Barbara' - water sample loc.3.









Fig. 17 The alpha spectrum of a water sample – EM 'Barbara' - water sample loc.4.



Fig. 18 The alpha spectrum of a water sample – EM 'Barbara' - water sample loc.5.







Fig. 19 The alpha spectrum of a water sample – EM 'Barbara'- water sample loc.6.





Fig. 20 The alpha spectrum of a water sample – EM 'Barbara'- water sample loc.8.







## 4. Laboratory analyses of the rock samples

Measurements of the concentration of uranium, radium and potassium radioisotopes in the rock samples (*Fig. 21*) were performed in an external laboratory - "Low-level Activity Research Laboratory", Institute of Physics, the University of Silesia in Katowice, Poland.

Description of the sites where rock samples were taken:

| Hall ID        | Depth below<br>surface | Sites (wall, floor, brick, concrete, | Method of the sampling        | Name of the sample      |
|----------------|------------------------|--------------------------------------|-------------------------------|-------------------------|
|                | [m w.e.]               | other)                               |                               |                         |
| blind chamber  | 177                    |                                      |                               | Sample 1-18             |
| excavation     | 122                    |                                      |                               |                         |
| Localization 1 |                        |                                      | newly chipped<br>rock samples | Stone sample loc. 1     |
| Localization 2 |                        |                                      |                               | Stone sample loc. 2     |
| Localization 2 | 80                     | Wall                                 |                               | Carbon sample loc. 2    |
| Localization 6 | (layer 310)            |                                      |                               | Slate sample loc. 6     |
| Localization 6 |                        |                                      |                               | Sandstone sample loc. 6 |
| Localization 7 |                        |                                      |                               | Carbon sample loc. 7    |

 Tab. 10 Description of the sites where rock samples were collected.



Fig. 21 (a) place of rock sampling and in-situ measurements in the EM 'Barbara' (sample 1-18), (b) approximate sampling location, (c) diagram of the place where the samples were taken.



MPOWERING INDERGROUND ABORATORIES IFTWORK USAGE







Fig. 22 (a) diagram of the place where the samples were taken (b) localization 1 - stone sampling, (c) localization 2 – stone and carbon sampling.



UNIVERSITY OF SILESIA

IN KATOWICE

Interrec

Baltic Sea Region

Fig. 23 (a) diagram of the place where the samples were taken (b) localization 6 – slate and sandstone sampling, localization 7 – carbon sampling.

## a. Radium and potassium concentration in rock samples

#### Information about measurement

The concentration of radium and potassium isotopes in the rock samples was determined by gamma spectroscopy with the HPGe detector in a lead shield (*Fig. 24a*). The activity of <sup>40</sup>K was calculated directly from a single 1460.8 keV line. The activity of <sup>226</sup>Ra was calculated as the weighted mean of the values obtained from the <sup>214</sup>Pb (295.2, 351.9 keV) and <sup>214</sup>Bi (609.3, 1120.3 keV) isotopes, while <sup>228</sup>Ra activity was calculated from the gamma lines 338.3 keV and 911.1 keV originating from <sup>228</sup>Ac decay. The total duration of a single measurement depended on the sample activity.

Description of the procedure performed before measurements and conditions during measurements (e.g., use of a Marinelli beaker; shielding of the detector; drying, crushing, grinding, mixing of rock; other relevant information): **Before the measurements, the rock sample** 

31







was dried, crushed, ground, mixed and placed in a Marinelli container (Fig. 24b,c, Fig. 25), which was then sealed and left for one month to achieve secular equilibrium in the thorium and uranium series. The grains diameter after crushing the rock sample were less than 1 mm. Measurements were made in a shielded cover made of lead and copper.



Fig. 24 (a) HPGe detector with shielding, (b) crushed rock sample no. 11, (c) rock sample in Marinelli containers.



Localization 6 – slate sample 6



Fig. 25 Stone sample from localization 1, carbon sample from localization 7, slate and sandstone sample from localization 6.







#### Tab. 11 Results of radium and potassium concentration in rock, stone, slate, sandstone and carbon samples.

| Hall ID<br>(name of sample) | Measu-<br>rement<br>method | Equipment<br>type |    | u- Equipment relative<br>nt type [%] | Equipment<br>type |                 |            | Average resul<br>[Bq/kg] | ts |
|-----------------------------|----------------------------|-------------------|----|--------------------------------------|-------------------|-----------------|------------|--------------------------|----|
| methou                      |                            | [/0]              |    | <sup>226</sup> Ra                    | <sup>228</sup> Ra | <sup>40</sup> K |            |                          |    |
| Rock sample 1               |                            |                   |    |                                      | 3.0 days          | 9.7±0.4*        | 9.4±0.3*   | 476±8*                   |    |
| Rock sample 2               |                            |                   |    | 2.8 days                             | 24.6±0.8*         | 25.8±0.5*       | 515±8*     |                          |    |
| Rock sample 3               |                            |                   |    | 2.9 days                             | 12.3±0.4*         | 10.6±0.3*       | 453±7*     |                          |    |
| Rock sample 4               |                            |                   |    | 1.9 days                             | 14.5±0.5*         | 12.6±0.4*       | 560±10*    |                          |    |
| Rock sample 5               |                            |                   |    | 2.1 days                             | 12.9±0.5*         | 12.8±0.3*       | 463±8*     |                          |    |
| Rock sample 6               |                            |                   |    | 4 days                               | 10.4±0.4*         | 11.1±0.3*       | 545±9*     |                          |    |
| Rock sample 7               |                            |                   |    | 2 days                               | 22.6±0.8*         | 17.3±0.4*       | 560±10*    |                          |    |
| Rock sample 8               |                            |                   |    | 2.1 days                             | 9.7±0.4*          | 11.0±0.4*       | 466±8*     |                          |    |
| Rock sample 9               |                            |                   |    | 3 days                               | 14.2±0.8*         | 11.5±0.3*       | 535±9*     |                          |    |
| Rock sample 10              |                            |                   |    | 2.1 days                             | 10.4±0.4*         | 8.4±0.3*        | 434±7*     |                          |    |
| Rock sample 11              |                            |                   |    | 2.7 days                             | 53.7±1.8*         | 31.5±0.7*       | 601±10*    |                          |    |
| Rock sample 12              |                            |                   |    | 3.1 days                             | 14.7±0.5*         | 14.0±0.6*       | 557±9*     |                          |    |
| Rock sample 13              | Gamma                      |                   |    | 2 days                               | 25.8±0.9*         | 28.4±0.6*       | 485±8*     |                          |    |
| Rock sample 14              | spectro-                   | detector          | 20 | 2.3 days                             | 35.5±1.2*         | 31.5±0.7*       | 609±10*    |                          |    |
| Rock sample 15              | metry                      | detector          |    | 2 days                               | 24.3±0.9*         | 14.8±0.4*       | 541±9*     |                          |    |
| Rock sample 16              |                            |                   |    | 3.9 days                             | 11.8±0.4*         | 12.3±0.3*       | 533±8*     |                          |    |
| Rock sample 17              |                            |                   |    | 1.9 days                             | 8.1±0.3*          | 7.0±0.3*        | 521±9*     |                          |    |
| Rock sample 18              |                            |                   |    | 2.1 days                             | 11.0±0.4*         | 10.4±0.3*       | 446±8*     |                          |    |
| Stone sample loc.1          |                            |                   |    | 2.1 days                             | 64.9±2.4          | 58.2±1.2        | 685.5±11.2 |                          |    |
| Stone sample loc.2          |                            |                   |    | 2.0 days                             | 53.3±2.0          | 47.2±1.0        | 813.7±13.0 |                          |    |
| Carbon sample               | -                          |                   |    | 4.6 davs                             | 3.0±0.1           | 1.2±0.1         | 3.6±0.1    |                          |    |
| loc.2                       |                            |                   |    |                                      |                   |                 |            |                          |    |
| Slate sample loc.6          |                            |                   |    | 2.1 days                             | 61.3±2.3          | 51.6±1.0        | 856.6±13.6 |                          |    |
| Sandstone sample<br>loc.6   |                            |                   |    | 2.2 days                             | 26.2±1.0          | 23.8±0.5        | 668.0±10.8 |                          |    |
| Carbon sample<br>loc.7      |                            |                   |    | 4.0 days                             | 4.3±0.2           | 1.8±0.1         | 8.8±0.5    |                          |    |

\*data are presented in A. Walencik-Łata, et al., Characteristics of Natural Background Radiation in the GIG Experimental Mine 'Barbara', Poland. Energies 2022, 15, 685

Gamma-ray spectra:



EMPOWERING UNDERGROUND LABORATORIES NFTWORK USAGE







Fig. 26 Gamma-ray spectrum of a rock sample 1.



Fig. 27 Gamma-ray spectrum of a rock sample 2.



EMPOWERING JNDERGROUND ABORATORIES







Fig. 28 Gamma-ray spectrum of a rock sample 3.



Fig. 29 Gamma-ray spectrum of a rock sample 4.



EMPOWERING UNDERGROUND LABORATORIES NFTWORK USAGE







Fig. 30 Gamma-ray spectrum of a rock sample 5.



Fig. 31 Gamma-ray spectrum of a rock sample 6.



EMPOWERING UNDERGROUND LABORATORIES







Fig. 32 Gamma-ray spectrum of a rock sample 7.



Fig. 33 Gamma-ray spectrum of a rock sample 8.



EMPOWERING UNDERGROUND LABORATORIES







Fig. 34 Gamma-ray spectrum of a rock sample 9.



Fig. 35 Gamma-ray spectrum of a rock sample 10.



EMPOWERING UNDERGROUND LABORATORIES NETWORK USAGE







Fig. 36 Gamma-ray spectrum of a rock sample 11.



Fig. 37 Gamma-ray spectrum of a rock sample 12.



EMPOWERING UNDERGROUND LABORATORIES







Fig. 38 Gamma-ray spectrum of a rock sample 13.



Fig. 39 Gamma-ray spectrum of a rock sample 14.



EMPOWERING UNDERGROUND LABORATORIES







Fig. 40 Gamma-ray spectrum of a rock sample 15.



Fig. 41 Gamma-ray spectrum of a rock sample 16.



EMPOWERING UNDERGROUND LABORATORIES NETWORK USAGE







Fig. 42 Gamma-ray spectrum of a rock sample 17.



Fig. 43 Gamma-ray spectrum of a rock sample 18.



EMPOWERING UNDERGROUND LABORATORIES







Fig. 44 Gamma-ray spectrum of a stone sample loc.1.



Fig. 45 Gamma-ray spectrum of a stone sample loc.2.



EMPOWERING JNDERGROUND LABORATORIES







Fig. 46 Gamma-ray spectrum of a carbon sample loc.2.



Fig. 47 Gamma-ray spectrum of a slate sample loc.6.



EMPOWERING UNDERGROUND LABORATORIES







Fig. 48 Gamma-ray spectrum of a sandstone sample loc.6.



Fig. 49 Gamma-ray spectrum of a carbon sample loc.7.



APOWERING NDERGROUND BORATORIES





- b. Uranium concentration in rock samples
  - <u>Description of the performed chemical procedure</u>

The concentration of uranium <sup>234</sup>U and <sup>238</sup>U isotopes in the rock samples were determined by semiconductor alpha spectrometry and 7401VR (Canberra, USA) and Alpha Analyst<sup>M</sup> (Mirion Technologies (Canberra), Inc., USA) spectrometers (*Fig. 50a,b*). A radiochemical procedure was applied to prepare an alpha spectrometric source before measurement. For this purpose, wet mineralization of the rock sample was performed using hot acids: HF, HNO<sub>3</sub>, HCl, with H<sub>3</sub>BO<sub>3</sub>. Uranium was pre-concentrated with iron and co-precipitated at pH 9. The separation of U was performed using the anion exchange resin Dowex 1×8 (Cl<sup>-</sup> type, 200-400 mesh) based on a procedure worked out by Suomela (1993). The spectrometric source was prepared by coprecipitation of U with NdF<sub>3</sub> and deposition on polypropylene disks (0.1 µm) (Pall Corporation).

References:

J. Suomela, Method for determination of U-isotopes in water, Swedish Radiation Institute, Stockholm, SSI-rapport, 0282-4434, 93:14 (1993).



Fig. 50 (a) The alpha spectrometer 7401VR (Canberra, USA), (b) The alpha spectrometer Alpha Analyst<sup>™</sup> (Mirion Technologies (Canberra), Inc., USA).







#### • Information about measurement and results

Tab. 12 Results of uranium radioisotopes concentration in rock samples.

| Hall ID<br>(name | Measu-<br>rement  | Equipment<br>type         | JuipmentCollectionLimit ofAverage resultspeperioddetection[Bq/kg] |                                  | e <b>results</b><br>/kg] | ratio<br><sup>234</sup> U/ <sup>238</sup> U | <b>U</b> [ppm] |           |
|------------------|-------------------|---------------------------|-------------------------------------------------------------------|----------------------------------|--------------------------|---------------------------------------------|----------------|-----------|
| of               | method            |                           |                                                                   |                                  | <sup>234</sup> U         | <sup>238</sup> U                            |                |           |
| Rock<br>sample 1 |                   | spectrometers             |                                                                   |                                  | 10.4±0.8*                | 10.4±0.8*                                   | 1.00±0.10*     | 0.84±0.06 |
| Rock<br>sample 2 |                   | 7401VR<br>(Canberra–      |                                                                   | 0.5 mBq/l<br>for both            | 22.2±1.1*                | 21.6±1.0*                                   | 1.03±0.07*     | 1.75±0.08 |
| Rock<br>sample 3 | Alpha             | Packard) and<br>Alpha     |                                                                   | <sup>234,238</sup> U<br>isotopes | 14.9±1.2*                | 14.7±1.1*                                   | 1.01±0.11*     | 1.19±0.09 |
| Rock<br>sample 4 | spectro-<br>scopy | Analyst™<br>(Mirion       | 1-7 days                                                          | and 0.5 l                        | 15.3±1.1*                | 15.2±1.0*                                   | 1.01±0.10*     | 1.23±0.08 |
| Rock<br>sample 5 |                   | Technologies              |                                                                   | sample                           | 15.8±1.0*                | 15.9±1.0*                                   | 0.99±0.09*     | 1.29±0.08 |
| Rock<br>sample 6 |                   | (Canberra),<br>Inc., USA) |                                                                   | volume                           | 11.9±1.0*                | 10.7±0.9*                                   | 1.11±0.13*     | 0.87±0.07 |

\*data are presented in A. Walencik-Łata, et al., Characteristics of Natural Background Radiation in the GIG Experimental Mine 'Barbara', Poland. Energies 2022, 15, 685

#### Alpha spectra:



Fig. 51 The alpha spectrum of a rock sample 1 – EM 'Barbara'.









Fig. 52 The alpha spectrum of a rock sample 2 – EM 'Barbara'.



Fig. 53 The alpha spectrum of a rock sample 3 – EM 'Barbara'.









Fig. 54 The alpha spectrum of a rock sample 4 – EM 'Barbara'.



Fig. 55 The alpha spectrum of a rock sample 5 – EM 'Barbara'.





Fig. 56 The alpha spectrum of a rock sample 6 – EM 'Barbara'.

#### c. Neutron activation of the rock sample

#### Information about measurement and results

Before the measurements, the rock samples were dried, crushed, and mixed. The grain diameter of the crushed rock sample was less than 1 mm. Then the sample was placed in a plastic bag and activated by neutron flux from a <sup>252</sup>Cf source (*Fig. 57b*) by period of one month. Immediately after activation, the gamma-ray spectrum was measured by gamma spectroscopy with a lead-shielded HPGe detector (*Fig. 57a*). Measurements were carried out in several cycles, in short cycles to determine the short-lived isotopes produced during the activation of the sample by neutrons, and in long cycles to determine the long-lived isotopes.











Fig. 57 (a) HPGe detector, (b) source (252Cf) of neutron activation, (c) rock sample after neutron activation for gamma-ray spectrometry.

#### Information about measurement and results

| Hall ID<br>(name of<br>sample) | Measure-<br>ment method | Equipment<br>type | Detection<br>relative<br>efficiency<br>[%] | Collection<br>period                                               | Source of<br>neutron<br>activation  | Neutron<br>flux of<br>the<br>source | Activated<br>isotopes                                                                                                     |
|--------------------------------|-------------------------|-------------------|--------------------------------------------|--------------------------------------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Sample 11                      | Gamma<br>scpectrometry  | HPGe<br>detector  | 20                                         | Short<br>measurements<br>and long<br>measurements<br>by a few days | californium<br>( <sup>252</sup> Cf) | 10 <sup>5</sup><br>n/cm²/s          | <sup>57</sup> Ni,<br><sup>46</sup> Sc,<br><sup>56</sup> Mn,<br><sup>24</sup> Na,<br><sup>42</sup> K,<br><sup>140</sup> La |

Tab. 13 Neutron activation results of the rock sample from EM 'Barbara'\*.

\*data are presented in A. Walencik-Łata, et al., Characteristics of Natural Background Radiation in the GIG Experimental Mine 'Barbara', Poland. Energies 2022, 15, 685

Analysis of rock sample, which underwent neutron activation.

Tab. 14 Comparison of counts per second for a rock sample before and after neutron activation of a rock sample.

|                   |              | Counts per second                     |                                                 |                                                    |  |  |
|-------------------|--------------|---------------------------------------|-------------------------------------------------|----------------------------------------------------|--|--|
| lsotope           | Energy [keV] | Rock sample before neutron activation | Rock sample 67 h<br>after neutron<br>activation | Rock sample 101.7 h<br>after neutron<br>activation |  |  |
| <sup>210</sup> Pb | 46.5         | 0.01400                               | 0.00810                                         | 0.00810                                            |  |  |
| <sup>214</sup> Pb | 53.2         | 0.00779                               |                                                 |                                                    |  |  |
| <sup>230</sup> Th | 63.3         | 0.04613                               | 0.02314                                         | 0.02327                                            |  |  |



| <sup>230</sup> Th                    | 67.7  | 0.00236 | 0.00184 | 0.00271 |
|--------------------------------------|-------|---------|---------|---------|
| X Pb K <sub>α2</sub>                 | 72.8  | 0.01307 | 0.00658 | 0.00684 |
| X Pb K <sub>α1</sub>                 | 74.97 | 0.19313 | 0.08356 | 0.08316 |
| <sup>227</sup> Th                    | 77.1  | 0.30181 | 0.13156 | 0.12848 |
| Χ Ρο Κ <sub>α1</sub>                 | 79.3  | 0.00289 | 0.00101 | 0.00173 |
| X Rn K <sub>α2</sub>                 | 81.1  | 0.00278 | 0.00098 | 0.00223 |
| X Rn K <sub>α1</sub>                 | 83.8  | 0.03198 | 0.01360 | 0.01529 |
| Х Ві К <sub>β1</sub>                 | 87.3  | 0.10002 | 0.04410 | 0.0426  |
| Χ Βί Κ <sub>β2</sub>                 | 89.8  | 0.05874 | 0.02391 | 0.0244  |
| <sup>234</sup> Th                    | 92.7  | 0.10448 | 0.05135 | 0.0507  |
| Χ U Κ <sub>α1</sub>                  | 98.4  | 0.00711 |         |         |
| <sup>228</sup> Ac                    | 99.5  | 0.01388 | 0.00777 | 0.0093  |
| X Ra K <sub>β1</sub>                 | 103   |         | 0.00981 | 0.0039  |
| X Th K <sub>β1</sub>                 | 105.6 | 0.01692 | 0.00896 | 0.0072  |
| X Th K <sub>β2</sub>                 | 108.6 | 0.00729 |         | 0.0026  |
| <sup>234</sup> Th                    | 112.8 | 0.00508 | 0.00369 | 0.0015  |
| <sup>212</sup> Pb                    | 115.2 | 0.00656 | 0.00304 | 0.0024  |
| <sup>228</sup> Ac                    | 129.1 | 0.02296 | 0.01127 | 0.0102  |
| <sup>228</sup> Th                    | 131.3 |         |         | 0.0011  |
| <sup>235</sup> U                     | 143.8 | 0.01039 | 0.00423 | 0.0060  |
| <sup>228</sup> Ac                    | 154   | 0.01328 | 0.00640 | 0.0059  |
| <sup>235</sup> U                     | 163.4 | 0.00506 | 0.00206 | 0.0036  |
| <sup>235</sup> U                     | 186.1 | 0.12164 | 0.05612 | 0.0524  |
| <sup>228</sup> Ac                    | 191.6 | 0.00196 |         |         |
| <sup>228</sup> Ac                    | 199.4 | 0.00315 |         |         |
| <sup>235</sup> U                     | 205.3 | 0.00561 | 0.00199 | 0.0018  |
| <sup>228</sup> Ac                    | 209.3 | 0.03812 | 0.01733 | 0.0154  |
| <sup>228</sup> Th                    | 216.5 | 0.00277 |         | 0.0021  |
| <sup>227</sup> Th                    | 236   | 0.00853 | 0.00349 | 0.0029  |
| <sup>212</sup> Pb                    | 238.6 | 0.43551 | 0.18229 | 0.1754  |
| <sup>214</sup> Pb                    | 242   | 0.11534 | 0.04953 | 0.0471  |
| <sup>208</sup> TI                    | 252.6 | 0.00179 | 0.00102 | 0.0010  |
| <sup>227</sup> Th                    | 256.2 | 0.00487 | 0.00239 | 0.0016  |
| <sup>214</sup> Pb/ <sup>227</sup> Ra | 258.9 | 0.00774 | 0.00452 | 0.0028  |
| <sup>228</sup> Ac                    | 270.2 | 0.04244 | 0.01631 | 0.0175  |
| <sup>214</sup> Pb                    | 274.8 | 0.00320 | 0.00193 | 0.0009  |
| <sup>208</sup> TI/ <sup>227</sup> Ra | 277.4 | 0.01666 | 0.00858 | 0.0065  |
| <sup>212</sup> Bi                    | 288.1 | 0.00193 |         | 0.0005  |
| <sup>214</sup> Pb                    | 295.2 | 0.21707 | 0.08974 | 0.0880  |
| <sup>212</sup> Pb/ <sup>227</sup> Ra | 300.1 | 0.02595 | 0.00983 | 0.0099  |
| <sup>227</sup> Ra                    | 302.7 | 0.00117 |         |         |
| I                                    |       |         |         |         |





|   | UNDERGROUNE  |
|---|--------------|
| - |              |
|   | NETWORK USAG |
|   |              |

| <sup>214</sup> Pb                          | 323.8 | 0.00036 |         | 0.00064 |
|--------------------------------------------|-------|---------|---------|---------|
| <sup>228</sup> Ac                          | 327.6 | 0.02033 | 0.00889 | 0.00801 |
| <sup>228</sup> Ac                          | 332.4 | 0.00193 |         |         |
| <sup>228</sup> Ac                          | 338.3 | 0.08217 | 0.03191 | 0.03145 |
| <sup>228</sup> Ac                          | 341   | 0.00226 |         |         |
| <sup>214</sup> Pb                          | 351.9 | 0.36334 | 0.15232 | 0.14524 |
| <sup>214</sup> Bi                          | 386.8 | 0.00237 |         | 0.00108 |
| <sup>214</sup> Bi                          | 388.9 | 0.00351 |         | 0.00134 |
| <sup>219</sup> Rn                          | 401.8 | 0.00343 | 0.00006 | 0.00137 |
| <sup>214</sup> Bi                          | 405.7 |         |         | 0.00121 |
| <sup>228</sup> Ac                          | 409.5 | 0.01009 | 0.00424 | 0.00444 |
| <sup>214</sup> Bi                          | 426.5 | 0.00160 |         |         |
| <sup>40</sup> K (DEP)                      | 438.8 | 0.00397 | 0.00153 | 0.00164 |
| <sup>212</sup> Bi                          | 452.8 | 0.00189 |         |         |
| <sup>214</sup> Bi                          | 454.8 | 0.00165 |         |         |
| <sup>228</sup> Ac                          | 463   | 0.02421 | 0.00968 | 0.00918 |
| <sup>214</sup> Bi                          | 474.4 |         |         | 0.00008 |
| <sup>214</sup> Pb                          | 480.4 | 0.00139 |         | 0.00094 |
| <sup>214</sup> Pb <b>/<sup>140</sup>La</b> | 487.1 | 0.00410 | 0.00183 | 0.00125 |
| <sup>228</sup> Ac                          | 503.8 | 0.00001 |         |         |
| <sup>208</sup> TI                          | 510.8 | 0.04917 | 0.02644 | 0.02596 |
| <sup>228</sup> Ac                          | 546.5 | 0.00049 |         | 0.00053 |
| <sup>228</sup> Ac                          | 562.5 | 0.00454 | 0.00119 | 0.00097 |
| <sup>214</sup> Pb                          | 580.1 | 0.00245 |         | 0.00061 |
| <sup>208</sup> TI                          | 583.2 | 0.12447 | 0.04912 | 0.04890 |
| <sup>214</sup> Bi                          | 609.3 | 0.25491 | 0.10412 | 0.10216 |
| <sup>214</sup> Bi                          | 665.5 | 0.00643 | 0.00305 | 0.00307 |
| <sup>214</sup> Bi                          | 703.1 | 0.00282 | 0.00141 | 0.00095 |
| <sup>228</sup> Ac                          | 707.4 |         | 0.00084 |         |
| <sup>214</sup> Bi                          | 719.9 | 0.00110 |         | 0.00106 |
| <sup>212</sup> Bi                          | 727.2 | 0.02645 | 0.01058 | 0.01012 |
| <sup>214</sup> Bi(DEP)                     | 742.5 | 0.00223 | 0.00038 |         |
| <sup>228</sup> Ac                          | 755.5 | 0.00422 | 0.00070 | 0.00175 |
| <sup>208</sup> TI                          | 763.1 | 0.00165 | 0.00042 | 0.00082 |
| <sup>214</sup> Bi                          | 768.4 | 0.02236 | 0.00907 | 0.00950 |
| <sup>228</sup> Ac                          | 772.3 | 0.00467 | 0.00154 | 0.00196 |
| <sup>228</sup> Ac                          | 782.1 | 0.00151 |         |         |
| <sup>212</sup> Bi/ <sup>214</sup> Pb       | 785.4 | 0.00911 | 0.00373 | 0.00312 |
| <sup>228</sup> Ac                          | 795   | 0.01395 | 0.00559 | 0.00536 |
| <sup>214</sup> Bi                          | 806.2 | 0.00490 | 0.00224 | 0.00198 |
| <sup>228</sup> Ac                          | 830.5 | 0.00221 |         |         |

UNIVERSITY OF SILESIA IN KATOWICE

V



| V | UNIVERSITY OF SILESIA<br>IN KATOWICE |
|---|--------------------------------------|
|---|--------------------------------------|

| 228                                       | 005 7  | 0.00533 | 0.00045 | 0.004.00 |
|-------------------------------------------|--------|---------|---------|----------|
| <sup>220</sup> AC                         | 835.7  | 0.00532 | 0.00245 | 0.00169  |
| <sup>214</sup> PD                         | 839    | 0.00513 | 0.00147 | 0.00163  |
|                                           | 846.8  | 0.01011 | 0.00031 | 0.0050   |
| 200                                       | 860.6  | 0.01341 | 0.00595 | 0.00534  |
| <sup>40</sup> SC                          | 889.3  |         | 0.00034 | 0.00051  |
| <sup>228</sup> Ac                         | 904.2  | 0.00190 | 0.00065 | 0.00080  |
| 228Ac                                     | 911.2  | 0.07908 | 0.03190 | 0.03131  |
| <sup>214</sup> Bi                         | 934.1  | 0.01140 | 0.00457 | 0.00452  |
| <sup>228</sup> Ac                         | 964.8  | 0.01533 | 0.00642 | 0.00611  |
| <sup>228</sup> Ac                         | 969    | 0.04651 | 0.01859 | 0.01828  |
| <sup>234m</sup> Pa                        | 1001   | 0.00415 | 0.00158 | 0.00218  |
| <sup>214</sup> Bi                         | 1032.4 | 0.00062 |         |          |
| <sup>214</sup> Bi                         | 1052   | 0.00120 |         | 0.00017  |
| <sup>228</sup> Ac                         | 1165.2 | 0.00085 |         |          |
| <sup>214</sup> Bi                         | 1070   | 0.00076 | 0.00029 | 0.00034  |
| <sup>212</sup> Bi                         | 1078.6 | 0.00149 | 0.00012 | 0.00068  |
| <sup>228</sup> Ac                         | 1110.6 | 0.00114 |         | 0.0007   |
| <sup>46</sup> Sc/ <sup>214</sup> Bi       | 1120.2 | 0.05102 | 0.02123 | 0.02036  |
| <sup>214</sup> Bi                         | 1155.2 | 0.00552 | 0.00211 | 0.00237  |
| <sup>214</sup> Bi                         | 1207.7 | 0.00113 | 0.00055 | 0.00027  |
| <sup>214</sup> Bi                         | 1238.1 | 0.01940 | 0.00779 | 0.00736  |
| <sup>228</sup> Ac                         | 1247.1 |         |         | 0.00001  |
| <sup>214</sup> Bi                         | 1281   | 0.00418 | 0.00193 | 0.00137  |
| <sup>24</sup> Na                          | 1368.6 |         | 0.00478 |          |
| <sup>214</sup> Bi <b>/<sup>57</sup>Ni</b> | 1377.7 | 0.01198 | 0.00546 | 0.00517  |
| <sup>214</sup> Bi                         | 1385.3 | 0.00224 | 0.00076 | 0.00080  |
| <sup>214</sup> Bi                         | 1401.5 | 0.00382 | 0.00183 | 0.00152  |
| <sup>214</sup> Bi                         | 1408   | 0.00658 | 0.00283 | 0.00282  |
| <sup>40</sup> K                           | 1460.8 | 0.32417 | 0.13591 | 0.13247  |
| <sup>228</sup> Ac                         | 1495.9 | 0.00175 | 0.00074 | 0.00059  |
| <sup>228</sup> Ac                         | 1501.6 | 0.00074 | 0.00028 |          |
| <sup>214</sup> Bi                         | 1509.2 | 0.00589 | 0.00256 | 0.00181  |
| <sup>214</sup> Bi                         | 1512.7 | 0.00077 | 0.00032 | 0.00000  |
| <sup>42</sup> K                           | 1524.7 |         | 0.00108 | 0.00000  |
| <sup>214</sup> Bi                         | 1538.5 | 0.00111 |         | 0.00042  |
| <sup>214</sup> Bi                         | 1543.3 | 0.00083 | 0.00045 | 0.00049  |
| <sup>228</sup> Ac                         | 1580.5 | 0.00113 |         | 0.0005   |
| <sup>214</sup> Bi                         | 1583.2 | 0.00176 | 0.00044 | 0.00078  |
| <sup>228</sup> Ac                         | 1588.2 | 0.00605 | 0.00187 | 0.00249  |
|                                           | 2000.2 | 0.00000 | 0.00107 | 0.00215  |
| <sup>208</sup> TI (DFP)                   | 1592 5 | 0.00619 | 0.00196 | 0 00274  |







| <sup>214</sup> Bi       | 1599.3 | 0.00070 |         | 0.00045 |
|-------------------------|--------|---------|---------|---------|
| <sup>212</sup> Bi       | 1620.5 | 0.00269 | 0.00109 | 0.00113 |
| <sup>228</sup> Ac       | 1625.1 | 0.00049 |         |         |
| <sup>228</sup> Ac       | 1630.6 | 0.00303 | 0.00137 | 0.00103 |
| <sup>228</sup> Ac       | 1638.3 | 0.00073 |         | 0.00040 |
| <sup>214</sup> Bi       | 1661.3 | 0.00244 | 0.00087 | 0.00097 |
| <sup>214</sup> Bi       | 1684   | 0.00045 |         |         |
| <sup>214</sup> Bi       | 1729.6 | 0.00836 | 0.00388 | 0.00337 |
| <sup>214</sup> Bi       | 1764.5 | 0.03941 | 0.01624 | 0.01574 |
| <sup>214</sup> Bi       | 1838.4 | 0.00068 |         | 0.00030 |
| <sup>214</sup> Bi       | 1847.4 | 0.00521 | 0.00218 | 0.00225 |
| <sup>214</sup> Bi       | 1873.1 |         |         | 0.00013 |
| <sup>228</sup> Ac       | 1887.1 |         |         | 0.00004 |
| <sup>214</sup> Bi       | 1890.3 |         |         | 0.00004 |
| <sup>214</sup> Bi       | 1895.9 |         | 0.00010 |         |
| <sup>228</sup> Ac       | 1955.9 |         |         | 0.00014 |
| <sup>214</sup> Bi       | 2016.7 | 0.00013 |         |         |
| <sup>214</sup> Bi       | 2052.9 |         | 0.00013 |         |
| <sup>208</sup> TI (SEP) | 2103.5 | 0.00587 | 0.00261 | 0.00214 |
| <sup>214</sup> Bi       | 2118.6 | 0.00235 | 0.00090 | 0.00100 |
| <sup>214</sup> Bi       | 2204.2 | 0.01056 | 0.00437 | 0.00442 |
| <sup>214</sup> Bi       | 2292.4 | 0.00071 | 0.00014 | 0.00018 |
| <sup>214</sup> Bi       | 2447.9 | 0.00310 | 0.00156 | 0.00102 |
| <sup>208</sup> TI       | 2614.5 | 0.04015 | 0.01643 | 0.01647 |
|                         |        |         |         |         |

Gamma-ray spectrum:



MPOWERING JNDERGROUND ABORATORIES







Fig. 58 Gamma-ray spectrum of a rock sample (sample 11) 3.7 h after neutron activation.



Fig. 59 Gamma-ray spectrum of a rock sample (sample 11) 25.3 h after neutron activation.



MPOWERING JNDERGROUND ABORATORIES







Fig. 60 Gamma-ray spectrum of a rock sample (sample 11) 67 h after neutron activation.



Fig. 61 Gamma-ray spectrum of a rock sample (sample 11) 113.9 h after neutron activation.



EMPOWERING JNDERGROUND LABORATORIES







Fig. 62 Gamma-ray spectrum of a rock sample (sample 11) 168.7 h after neutron activation.



## 5. Laboratory analyses of the sediment samples

Measurements of the concentration of radium and potassium radioisotopes in the sediment samples were performed in an external laboratory - "Low-level Activity Research Laboratory", Institute of Physics, the University of Silesia in Katowice, Poland.

UNIVERSITY OF SILESIA

IN KATOWICE

Description of the sites where sediment samples were taken:

| Hall ID        | Depth below<br>surface | Sites | Method of the sampling | Name of the sample    |  |  |  |  |
|----------------|------------------------|-------|------------------------|-----------------------|--|--|--|--|
|                | [III w.e.]             |       |                        |                       |  |  |  |  |
| Localization 1 |                        |       |                        | Sediment sample loc.1 |  |  |  |  |
| Localization 2 |                        |       |                        | Sediment sample loc.2 |  |  |  |  |
| Localization 3 |                        |       | direct collection      | Sediment sample loc.3 |  |  |  |  |
| Localization 4 | 80 (layer 310)         | floor | into plastic           | Sediment sample loc.4 |  |  |  |  |
| Localization 5 |                        |       | containers             | Sediment sample loc.5 |  |  |  |  |
| Localization 8 |                        |       |                        | Sediment sample loc.8 |  |  |  |  |
| Localization 9 |                        |       |                        | Sediment sample loc.9 |  |  |  |  |

Tab. 15 Description of the sites where sediment samples were collected.





EMPOWERING JNDERGROUND ABORATORIES







Fig. 63 (a) diagram of the place where the samples were taken (b) localization 1 - sediment sampling, (c) localization 2 - sediment sampling.









Fig. 64 (a) diagram of the place where the samples were taken (b) localization 3 - sediment sampling, (c) localization 4 sediment sampling, (d) localization 5 - sediment sampling.



MPOWERING NDERGROUND ABORATORIES







Fig. 65 (a) diagram of the place where the samples were taken (b) localization 8 - sediment sampling.

## a. Radium and potassium concentration in sediment samples

## • Information about measurement

The concentration of radium and potassium isotopes in the sediment samples was determined by gamma spectroscopy with the HPGe detector in a lead shield (*Fig. 66a*). The activity of <sup>40</sup>K was calculated directly from a single 1460.8 keV line. The activity of <sup>226</sup>Ra was calculated as the weighted mean of the values obtained from the <sup>214</sup>Pb (295.2, 351.9 keV) and <sup>214</sup>Bi (609.3, 1120.3 keV) isotopes, while <sup>228</sup>Ra activity was calculated from the gamma lines 338.3 keV and 911.1 keV originating from <sup>228</sup>Ac decay. The total duration of a single measurement depended on the sample activity.

Description of the procedure performed before measurements and conditions during measurements (e.g. use of a Marinelli beaker; shielding of the detector; drying, crushing, grinding, mixing of rock; other relevant information): **Before the measurements, the sediment sample was** 



UNIVERSITY OF SILESIA



dried, crushed, ground, mixed and placed in a plastic container or in Marinelli beaker (Fig. 66b,c,d), which was then sealed and left for one month to achieve secular equilibrium in the thorium and uranium series. The grains diameter after crushing the sediment sample were less than 1 mm. Measurements were made in a shielded cover made of lead and copper.



Fig. 66 (a) HPGe detector with shielding, (b) sediment sample in plastic container and (c) Marinelli beaker, (d) sediment sample preparation steps (drying).

| Hall ID<br>(name of sample) | Measu-<br>rement<br>method | Equipment<br>type | Detection<br>relative<br>efficiency<br>[%] | Collection<br>period | <sup>226</sup> Ra | Average results<br>[Bq/kg]<br><sup>228</sup> Ra | <sup>40</sup> K |
|-----------------------------|----------------------------|-------------------|--------------------------------------------|----------------------|-------------------|-------------------------------------------------|-----------------|
| Sediment sample loc. 1      |                            |                   |                                            | 4.1 days             | 92.9±3.4          | 270.5±4.8                                       | 41.3±1.5        |
| Sediment sample loc. 2      |                            | ma<br>tro-<br>y   | 20                                         | 2.9 days             | 116.3±4.3         | 403.5±7.4                                       | 56.5±3.5        |
| Sediment sample loc. 3      | Gamma                      |                   |                                            | 4.1 days             | 32.3±0.3          | 257±11                                          | 211±13          |
| Sediment sample loc. 4      | spectro-                   |                   |                                            | 2.0 days             | 38.9±1.4          | 30.1±0.6                                        | 234.1±3.8       |
| Sediment sample loc. 5      | metry                      |                   |                                            | 4.1 days             | 20.3±0.7          | 30.1±0.6                                        | 223.8±3.5       |
| Sediment sample loc. 8      |                            |                   |                                            | 2.2 days             | 209.5±7.6         | 262.0±4.9                                       | 65.6±3.9        |
| Sediment sample loc. 9      |                            |                   |                                            | 2.1 days             | 58.1±2.1          | 39.8±0.9                                        | 486.1±8.7       |

| Tab. | 16 Results | of radium | and | potassium | concentration | in | sediment samples. |
|------|------------|-----------|-----|-----------|---------------|----|-------------------|
|      |            |           |     |           |               |    |                   |

Gamma-ray spectra:



EMPOWERING JNDERGROUND LABORATORIES







Fig. 67 Gamma-ray spectrum of a sediment sample loc.1.





EMPOWERING JNDERGROUND LABORATORIES







Fig. 69 Gamma-ray spectrum of a sediment sample loc.3.



Fig. 70 Gamma-ray spectrum of a sediment sample loc.4.



EMPOWERING JNDERGROUND ABORATORIES







Fig. 71 Gamma-ray spectrum of a sediment sample loc.5.



Fig. 72 Gamma-ray spectrum of a sediment sample loc.8.



EMPOWERING UNDERGROUND LABORATORIES NETWORK USAGE







